大学物理第四章振动.ppt

上传人:s****8 文档编号:67177201 上传时间:2022-12-24 格式:PPT 页数:43 大小:2.11MB
返回 下载 相关 举报
大学物理第四章振动.ppt_第1页
第1页 / 共43页
大学物理第四章振动.ppt_第2页
第2页 / 共43页
点击查看更多>>
资源描述

《大学物理第四章振动.ppt》由会员分享,可在线阅读,更多相关《大学物理第四章振动.ppt(43页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第第4章章 振动振动4.1 简谐振动及其描述简谐振动及其描述4.2 简谐振动的动力学方程简谐振动的动力学方程4.3 简谐振动的能量简谐振动的能量4.4 简谐振动的合成简谐振动的合成4.5 阻尼振动阻尼振动 受迫振动受迫振动 共振共振作业:作业:练习册练习册选择题:选择题:1-10填空题:填空题:1-10计算题:计算题:1-61 因为振动是声学、地震学、建筑力学等必须的因为振动是声学、地震学、建筑力学等必须的基础知识,自然界中还有许多现象,如交变电流、基础知识,自然界中还有许多现象,如交变电流、交变的电磁场等,都属于广义的振动现象。这些运交变的电磁场等,都属于广义的振动现象。这些运动的本质虽然并

2、非机械运动,但运动规律的数学描动的本质虽然并非机械运动,但运动规律的数学描述却与机械振动类似。因此,机械振动的研究也为述却与机械振动类似。因此,机械振动的研究也为光学、电学、交流电工学、无线电技术等打下了一光学、电学、交流电工学、无线电技术等打下了一定的基础。定的基础。任何一种复杂的机械振动都可以看成多个直线任何一种复杂的机械振动都可以看成多个直线振动的叠加。振动的叠加。学习机械振动的意义学习机械振动的意义2阅读材料阅读材料:频谱分析频谱分析利用付里叶分解可将任意振动分解成若干简谐振动利用付里叶分解可将任意振动分解成若干简谐振动(S.H.V.)simple harmonic vibration

3、 的叠加的叠加(合成的逆运算)。合成的逆运算)。对周期性振动:对周期性振动:T 周期周期k=1 基频基频()k=2 二二次谐频次谐频(2)k=3 三次谐频三次谐频(3)决定决定音调音调决定决定音色音色高次谐频高次谐频3物理上:物理上:一般振动是多个简谐振动的合成一般振动是多个简谐振动的合成数学上:数学上:付氏级数付氏级数 付氏积分付氏积分也可以说也可以说简谐振动简谐振动(S.H.V.)是振动的基本模型是振动的基本模型或说或说 振动的理论建立在振动的理论建立在简谐振动简谐振动(S.H.V.)的基础上。的基础上。4.1 简谐振动及其描述简谐振动及其描述 简简谐谐振振动动:物物体体运运动动时时,离离

4、开开平平衡衡位位置置的的位位移移(或或角位移角位移)按余弦按余弦(或正弦或正弦)规律随时间变化。规律随时间变化。速度速度加速度加速度42.简谐振动的特征量(振幅、周期、频率和相位)简谐振动的特征量(振幅、周期、频率和相位)振幅振幅 A周期周期T 和频率和频率 相位相位(1)(1)(t+0 )是是 t 时刻的相位时刻的相位,(2)(2)0 是是t=0 时刻的相位时刻的相位 初相初相。相位概念可用于比较两个谐振动之间在振动步调上的差异相位概念可用于比较两个谐振动之间在振动步调上的差异,设有两个同频率的谐振动,表达式分别为:设有两个同频率的谐振动,表达式分别为:相位差相位差 5x=A cos(t+0

5、)优点:优点:初位相直观明确。初位相直观明确。比较两个比较两个简谐振动的位相差直观明确。简谐振动的位相差直观明确。3.3.简谐振动的矢量图示法简谐振动的矢量图示法 t=0 0oxx t+0t=t x0ox(A1、A3)两个振动为反相两个振动为反相.(A1、A2)两个振动为同相;两个振动为同相;6例例:一物体沿一物体沿x轴作简谐振动,振幅轴作简谐振动,振幅A=0.12m,周期周期T=2s。当当t=0时时,物体物体的位移的位移x=0.06m,且向且向x轴正向运动。求轴正向运动。求:(1)(1)简谐振动表达式简谐振动表达式;(2)(2)t=T/4时物体的位置、速度和加速度时物体的位置、速度和加速度;

6、(3)(3)物体从物体从x=-0.06m向向x轴负方向运动,第一次回到平衡位置所需时间。轴负方向运动,第一次回到平衡位置所需时间。解解:(1):(1)取平衡位置为坐标原点取平衡位置为坐标原点,谐振动表达式写为:谐振动表达式写为:其中其中A=0.12m,T=2s,初始条件:初始条件:t=0,x0=0.06m,可得可得(2)(2)由由(1)(1)求得的简谐振动表达式得求得的简谐振动表达式得:在在t=T/4=0.5s时时,代入所列的表达式可求代入所列的表达式可求!7例例:一物体沿一物体沿x轴作简谐振动,振幅轴作简谐振动,振幅A=0.12m,周期周期T=2s。当当t=0时时,物体物体的位移的位移x=0

7、.06m,且向且向x轴正向运动。求轴正向运动。求:(1)(1)简谐振动表达式简谐振动表达式;(2)(2)t=T/4时物体的位置、速度和加速度时物体的位置、速度和加速度;(3)(3)物体从物体从x=-0.06m向向x轴负方向运动,第一次回到平衡位置所需时间。轴负方向运动,第一次回到平衡位置所需时间。解解:(3):(3)当当x=-0.06m且向且向x轴负方向运动轴负方向运动时时,该时刻设为该时刻设为t1 1,x10 x设物体在设物体在t2 2时刻第一次回到平衡位置时刻第一次回到平衡位置(x=0)=0),相位是相位是3 3/2从从t1 1时刻到时刻到t2 2时刻所对应的相差为时刻所对应的相差为:振幅

8、矢量的角速度振幅矢量的角速度,t=另外另外,T=2 84.2 简谐振动的动力学方程简谐振动的动力学方程受力特点受力特点:线性恢复力线性恢复力 F=-kx 以水平弹簧振子为例以水平弹簧振子为例 固有频率决定于系统内在性质固有频率决定于系统内在性质位移位移 x 之通解可写为:之通解可写为:固有固有(圆圆)频率频率常量常量A和和 0由初始条件由初始条件确定确定根据初始条件:根据初始条件:t=0 时,时,x=x0,v=v09(1)(1)单摆单摆 mmg几种常见的简谐振动几种常见的简谐振动重力的切向分力:重力的切向分力:很小很小,小于小于50 时,时,所以:单摆作小角度摆动,也是谐振动(角所以:单摆作小

9、角度摆动,也是谐振动(角谐振动)。重力的分力(准弹性力)。谐振动)。重力的分力(准弹性力)。通解为:通解为:10(2)(2)复摆复摆一个可绕固定轴摆动的刚体称为复摆。一个可绕固定轴摆动的刚体称为复摆。刚体的质心为刚体的质心为C,对过对过O点的转轴的点的转轴的转动惯量为转动惯量为I,O、C 两点间的距离为两点间的距离为h。令令据转动定律据转动定律M=I,得,得若若 角度较小时角度较小时h11简谐振动的能量简谐振动的能量(以水平弹簧振子为例以水平弹簧振子为例)(1)(1)动能动能4.3 简谐振动的能量简谐振动的能量(2)(2)势能势能情况同动能情况同动能。系统总的机械能:系统总的机械能:简谐振动系

10、统机械能守恒简谐振动系统机械能守恒12谐振子的动能、势能和总能量随时间的变化曲线谐振子的动能、势能和总能量随时间的变化曲线:0t0tx13简谐振动的动力学解法简谐振动的动力学解法1.由分析受力出发由分析受力出发(由牛顿定律列方程由牛顿定律列方程)2.由分析能量出发由分析能量出发(将能量守恒式对将能量守恒式对t 求导求导)例:弹簧竖直放置时物体的振动。例:弹簧竖直放置时物体的振动。弹簧原长弹簧原长挂挂m后伸长后伸长某时刻某时刻m位置位置伸伸 长长受弹力受弹力平衡位置平衡位置解:求平衡位置解:求平衡位置以平衡位置以平衡位置O为原点为原点因此因此,此振动为简谐振动。此振动为简谐振动。14以平衡位置以

11、平衡位置O为原点为原点弹簧原长弹簧原长挂挂m后伸长后伸长某时刻某时刻m位置位置伸伸 长长受弹力受弹力平衡位置平衡位置重力和弹性力都是保重力和弹性力都是保守力,合力守力,合力F F 作功将作功将转化为势能。转化为势能。包括重力势能和弹性势能包括重力势能和弹性势能系统的势能系统的势能15如果振动系统除去本身如果振动系统除去本身恢复力之外还有其它恒恢复力之外还有其它恒力作用。振动系统仍作力作用。振动系统仍作简谐振动。以振动系统简谐振动。以振动系统在恒力作用下的平衡位在恒力作用下的平衡位置为原点,则可按常规置为原点,则可按常规立刻写出简谐振动的微立刻写出简谐振动的微分方程或振动表达式。分方程或振动表达

12、式。在本例中在本例中弹簧原长弹簧原长挂挂m后伸长后伸长某时刻某时刻m位置位置伸伸 长长受弹力受弹力平衡位置平衡位置16例例:一质量为一质量为m的物体从倾角为的物体从倾角为 的光滑斜面顶点处由静止滑下,的光滑斜面顶点处由静止滑下,滑行滑行 远后与质量为远后与质量为M 的物体发生完全非弹性碰撞。的物体发生完全非弹性碰撞。M与倔强系与倔强系数为数为k的弹簧相连,碰前的弹簧相连,碰前M 静止于斜面。求:运动方程。静止于斜面。求:运动方程。mMk解解1:取取m与与M 碰撞连在一起后的平衡位碰撞连在一起后的平衡位置为坐标原点。置为坐标原点。设此时弹簧在设此时弹簧在m与与M的压缩的压缩下退了下退了x0。x0

13、原原长长Mmx0 坐标系如图坐标系如图0 x以振动系统在恒力作用下的平衡位置以振动系统在恒力作用下的平衡位置为原点,则可按常规立刻写出简谐振为原点,则可按常规立刻写出简谐振动的微分方程或振动表达式。动的微分方程或振动表达式。17例:一质量为例:一质量为m的物体从倾角为的物体从倾角为 的光滑斜面顶点处由静止滑下,的光滑斜面顶点处由静止滑下,滑行滑行 后远后与质量为后远后与质量为M的物体发生完全非弹性碰撞。的物体发生完全非弹性碰撞。M与倔强与倔强系数为系数为k的弹簧相连,碰前的弹簧相连,碰前M静止于斜面。求:运动方程。静止于斜面。求:运动方程。以以碰撞时作为记碰撞时作为记时起点时起点动量守恒动量守

14、恒初位置初位置A和和 0由初始条件由初始条件确定确定18解解2:取平衡位置取平衡位置(x=0)为为系统势能系统势能的零点。的零点。系统机械能守恒,有系统机械能守恒,有简谐振动的动力学解法简谐振动的动力学解法2.由分析能量出发由分析能量出发(将能量守恒式对将能量守恒式对t 求导求导)19势能讨论势能讨论取平衡位置取平衡位置(x=0)为系统为系统势能的零点。势能的零点。机械能守恒机械能守恒(初始(初始最大位移)最大位移)另,设弹簧自然长度(未形变)时弹性势能为零,重力势另,设弹簧自然长度(未形变)时弹性势能为零,重力势能的零点取在能的零点取在 x=0 处。处。(2)(1)20势能讨论势能讨论取平衡

15、位置取平衡位置(x=0)为系统为系统势能的零点。势能的零点。机械能守恒机械能守恒由初始条件决定由初始条件决定A也是机械能守恒定律的必然结果。也是机械能守恒定律的必然结果。21任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,弹簧振子的振动周期将变大还是变小?弹簧振子的振动周期将变大还是变小?讨论讨论变大变大变小变小参考解答:因为弹簧振子的周期决定于系统的惯性和弹性,惯性越大参考解答:因为弹簧振子的周期决定于系统的惯性和弹性,惯性越大则周期越大。因此可以定性地说,在考虑了弹簧的质量之后,弹簧振则周期越大。因此可以定性地说,在考虑了弹簧的质量之

16、后,弹簧振子的周期肯定会变大。子的周期肯定会变大。若振子的质量为若振子的质量为M,弹簧的质量为,弹簧的质量为m,弹簧的劲度系数为,弹簧的劲度系数为k,可以计算,可以计算出,在考虑了弹簧的质量之后,弹簧振子的振动周期为出,在考虑了弹簧的质量之后,弹簧振子的振动周期为22解:平衡时解:平衡时0 点为坐标原点。物体运动到点为坐标原点。物体运动到x 处时,处时,速度为速度为v.设此时弹簧的长度为设此时弹簧的长度为L,速度为:速度为:弹簧、物体的动能分别为:弹簧、物体的动能分别为:前提前提:弹簧各等长小段变形相同,位移是线性规律弹簧各等长小段变形相同,位移是线性规律弹簧元弹簧元dl的质量的质量位移为位移

17、为xxM0dll例:劲度系数为例:劲度系数为k、质量为质量为m 的均匀弹簧,一端固定,另一端系一质量为的均匀弹簧,一端固定,另一端系一质量为M 的物体,在光滑水平面内作直线运动。求解其运动。的物体,在光滑水平面内作直线运动。求解其运动。(m M )系统弹性势能系统弹性势能为为系统机械能守恒,有系统机械能守恒,有常数常数常数常数将上式对时间求导,整理后可得将上式对时间求导,整理后可得 因此,弹簧因此,弹簧质量小于物体质质量小于物体质量,且系统作微量,且系统作微运动时,弹簧振运动时,弹簧振子的运动可视为子的运动可视为是简谐运动。是简谐运动。234.4 简谐振动的合成简谐振动的合成1.1.同方向同频

18、率的两个简谐振动的合成同方向同频率的两个简谐振动的合成分振动分振动 :x1=A1cos(t+10)x2=A2cos(t+20)合振动合振动 :x=x1+x2=A cos(t+0)合振动是简谐振动合振动是简谐振动,其频率仍为其频率仍为 两个同方向同频率简谐振两个同方向同频率简谐振动的合成仍是简谐振动。动的合成仍是简谐振动。合振动的频率与分振动的合振动的频率与分振动的频率相同。频率相同。24两种特殊情况两种特殊情况 (1)(1)若两分振动同相若两分振动同相 20 10=2k (k=0,1,2,)(2)(2)若两分振动反相若两分振动反相 20 10=(2k+1)(k=0,1,2,)如如 A1=A2,

19、则则 A=0则则A=A1+A2,两分振动相互加强两分振动相互加强则则A=|A1-A2|,两分振动相互减弱两分振动相互减弱两个振动的位相差,对合成振动起着重要的作用,这种两个振动的位相差,对合成振动起着重要的作用,这种现象在波的干涉与衍射中具有特殊的意义现象在波的干涉与衍射中具有特殊的意义 25N个同方向、同频率的简谐个同方向、同频率的简谐振动,它们的振幅相等,初振动,它们的振幅相等,初相分别为相分别为0,2,2,.,.,依次差一个恒量依次差一个恒量 ,振动表振动表达式可写成达式可写成 采用旋转矢量法可使问题得到简化,从而避开烦琐采用旋转矢量法可使问题得到简化,从而避开烦琐的三角函数运算。的三角

20、函数运算。根据矢量合成法则,根据矢量合成法则,N个个简谐振动对应的旋转矢量的简谐振动对应的旋转矢量的合成如下图所示:合成如下图所示:2.2.多个同方向同频率简谐振动的合成多个同方向同频率简谐振动的合成合振动的频率与分振动的频率相同。合振动的频率与分振动的频率相同。合振动的振幅和初相是分析的关键合振动的振幅和初相是分析的关键!26 因各个振动的振幅相同且相差依次恒为因各个振动的振幅相同且相差依次恒为,上图中上图中各个矢量各个矢量 的起点和终点都在以的起点和终点都在以C为圆心的圆周上,根据简单的几何关系,可得为圆心的圆周上,根据简单的几何关系,可得27在三角形在三角形DOCM中中,OM 的长度就是

21、的长度就是合合振动振动的的振幅振幅A,角度角度 MOX就是就是合振合振动动的初相的初相,据此得,据此得考虑到考虑到283.3.同方向不同频率的两个简谐振动的合成同方向不同频率的两个简谐振动的合成 拍拍两个简谐振动的频率两个简谐振动的频率 1和和 2很接近,且很接近,且两个简谐振动合成得:两个简谐振动合成得:合振动可视为合振动可视为角频率为角频率为随时间变化很慢可随时间变化很慢可看作合振动的振幅看作合振动的振幅随时间变化较快可随时间变化较快可看作作谐振动的部分看作作谐振动的部分振幅为振幅为的简谐振动。的简谐振动。由于振幅总是正值,而余弦函数的绝对值以由于振幅总是正值,而余弦函数的绝对值以 为周期

22、,因而为周期,因而振幅变化的周期振幅变化的周期 可由可由振幅变化的频率即拍频振幅变化的频率即拍频29同一直线上,不同频率简谐振动合成同一直线上,不同频率简谐振动合成 拍拍旋转矢量旋转矢量几何法分析几何法分析重合:重合:反向:反向:oxA,拍频拍频:单位时间内强弱变化的次数单位时间内强弱变化的次数 =|2-1|561单位时间内单位时间内A2比比A1多转多转 2-1圈,也就是合圈,也就是合振动时加强时减弱(频率为振动时加强时减弱(频率为 2-1)的拍现象。)的拍现象。30两个同频率的相互垂直的分运动位移表达式两个同频率的相互垂直的分运动位移表达式消时间参数,得消时间参数,得 合合运运动动一一般般是

23、是在在2A1 (x 向向)、2A2 2(y 向向)范范围围内内的一个椭圆。的一个椭圆。椭椭圆圆的的性性质质(方方位位、长长短短轴轴、左左右右旋旋 )在在 A1、A2确定之后确定之后,主要决定于主要决定于 =20-10。4.4.相互垂直的简谐振动的合成相互垂直的简谐振动的合成31几种特殊情况几种特殊情况32方向垂直的不同频率的简谐振动的合成方向垂直的不同频率的简谐振动的合成两分振动频率相差很小两分振动频率相差很小可可看看作作两两频频率率相相等等而而 随随t 缓缓慢慢变变化化,合合运运动动轨轨迹迹将将按按上上页页图依次缓慢变化图依次缓慢变化 轨迹称为李萨如图形轨迹称为李萨如图形两振动的频率成整数比

24、两振动的频率成整数比33无阻尼自由振动无阻尼自由振动 物体在弹性力或准弹性力作用下产生的简谐运动称无物体在弹性力或准弹性力作用下产生的简谐运动称无阻尼自由振动。阻尼自由振动。阻尼振动阻尼振动 物体在弹性力(或准弹性力)和物体在弹性力(或准弹性力)和阻力阻力作用下产生的运作用下产生的运动称阻尼振动。动称阻尼振动。4.5 阻尼振动阻尼振动 受迫振动受迫振动 共振共振阻尼振动的种类:阻尼振动的种类:在阻尼振动中,振动系统所具有的能量将在振动过程在阻尼振动中,振动系统所具有的能量将在振动过程中逐渐减少。能量损失的原因通常有两种:中逐渐减少。能量损失的原因通常有两种:一种是由于介质对振一种是由于介质对振

25、动物体的摩擦阻力,使振动物体的摩擦阻力,使振动系统的能量动系统的能量逐渐变为热逐渐变为热运动的能量运动的能量而造成能量损而造成能量损失。这称失。这称摩擦阻尼摩擦阻尼。另一种是由于振动物体引起另一种是由于振动物体引起邻近质点振动,使振动系统的能邻近质点振动,使振动系统的能量逐渐向四周辐射出去,量逐渐向四周辐射出去,转变为转变为波动的能量波动的能量,而造成系统能量损,而造成系统能量损失。这称失。这称辐射阻尼辐射阻尼。34阻尼振动阻尼振动弹性力和上述阻力作用下的微分方程:弹性力和上述阻力作用下的微分方程:在流体在流体(液体、气体液体、气体)中运动的物体,当物体速度较小时,中运动的物体,当物体速度较小

26、时,阻力阻力 速度,速度,:阻力系数。阻力系数。令:令:称称 0 0为振动系统的固有角频率,称为振动系统的固有角频率,称 为阻尼因子为阻尼因子35(1)(1)2 02 阻尼较小时阻尼较小时,此方程的解此方程的解:这种情况称为这种情况称为欠阻尼欠阻尼由初始条件决定由初始条件决定A和初相位和初相位 0,设设即有即有:36欠阻尼下欠阻尼下1.1.振幅特点振幅特点振幅:振幅:A(t)=Ae-t振幅随振幅随t t 衰减。衰减。2.2.周期特点周期特点严严格格讲讲,阻阻尼尼振振动动不不是是周周期期性性振振动动(更更不不是是简简谐谐振振动动),因因为为位位移移x(t)不不是是t 的周期函数。的周期函数。但但

27、阻阻尼尼振振动动有有某某种种重重复性。复性。阻尼较大时,方程的解:阻尼较大时,方程的解:其中其中C1,C2是积分常数,由初始条件来决是积分常数,由初始条件来决定,这种情况称为定,这种情况称为过阻尼过阻尼。无振动发生无振动发生37(3)(3)如果如果 2=02 方程的解:方程的解:无振动发生无振动发生C1,C2是积分常数,由初始条件来决定,是积分常数,由初始条件来决定,这种情况称为这种情况称为临界阻尼临界阻尼。2=02(临界阻尼临界阻尼)情形下情形下:阻阻尼尼振振动动微微分分方方程程的的解解将将是是非非振振动动性性的的运运动动。运运动动物物体体连连一一次次振振动动也也不不能能完完成成,能能量量即

28、即已已耗耗光光,物物体体慢慢慢慢移移向向平平衡衡位位置置。和和过过阻阻尼尼情情形形相相比比,临临界界阻阻尼尼情情形形下下,物物体体回回到到平平衡衡位位置置并并停停在在那那里里,所需时间最短。所需时间最短。应用:电表阻尼、天平阻尼应用:电表阻尼、天平阻尼38 物体在物体在周期性外力周期性外力的持续作用下发生的振动称为的持续作用下发生的振动称为受迫振动受迫振动。物体所受驱动力:物体所受驱动力:运动方程:运动方程:设设受迫振动受迫振动 共振共振 1.1.受迫振动受迫振动39对于阻尼较小的情形,运动方程之解表为对于阻尼较小的情形,运动方程之解表为:经过一段时间后,衰减项忽略不计,仅考虑稳态项。经过一段

29、时间后,衰减项忽略不计,仅考虑稳态项。衰减项衰减项稳态项稳态项稳态时振动物体速度:稳态时振动物体速度:在受迫振动中,周期性的在受迫振动中,周期性的驱动力对振动系统提供能量,驱动力对振动系统提供能量,另一方面系统又因阻尼而消耗另一方面系统又因阻尼而消耗能量,若二者相等,则系统达能量,若二者相等,则系统达到稳定振动状态。到稳定振动状态。40 对对于于受受迫迫振振动动,当当外外力力幅幅值值恒恒定定时时,稳稳定定态态振振幅幅随随驱驱动动力力的的频频率率而而变变化化。当当驱驱动动力力的的角角频频率率等等于于某某个个特特定定值值时时,位位移移振振幅幅达达到到最最大大值值的现象称为的现象称为位移共振。位移共

30、振。阻尼阻尼=0=0阻尼较小阻尼较小阻尼较大阻尼较大根据根据2.2.共振共振41 受受迫迫振振动动速速度度在在一一定定条条件件下下发发生生共共振振的的的的现现象象称为称为速度共振。速度共振。根据根据 在在阻阻尼尼很很小小的的前前提提下下,速速度度共共振振和和位位移移共共振振可以认为等同。可以认为等同。阻尼阻尼=0=0阻尼较小阻尼较小阻尼较大阻尼较大42共振现象的应用:共振现象的应用:钢琴、小提琴等乐器利用共振来调音;收音机利用电磁共钢琴、小提琴等乐器利用共振来调音;收音机利用电磁共振进行选台;核内的核磁共振被用来进行物质结构的研究和医疗诊断等。振进行选台;核内的核磁共振被用来进行物质结构的研究

31、和医疗诊断等。危害:危害:(1)1904(1)1904年,一队俄国士兵以整齐的步法通过彼得堡的一座桥时,年,一队俄国士兵以整齐的步法通过彼得堡的一座桥时,由于产生共振而使桥倒塌;由于产生共振而使桥倒塌;(2)1940(2)1940年,美国华盛顿州的塔科麦桥,因大风引起的振荡作用同年,美国华盛顿州的塔科麦桥,因大风引起的振荡作用同桥的固有频率相近,产生共振而导致毁坏;桥的固有频率相近,产生共振而导致毁坏;(3)(3)汽车行驶时,若发动机的频率接近于车身的固有频率,车身也汽车行驶时,若发动机的频率接近于车身的固有频率,车身也会车身强烈的振动而受到损坏。会车身强烈的振动而受到损坏。防止共振:防止共振:(1)(1)改变系统的固有频率或外力的频率;改变系统的固有频率或外力的频率;(2)(2)破坏外力的周期性;破坏外力的周期性;(3)(3)增大系统的阻尼;增大系统的阻尼;对精密仪器使用减振台。对精密仪器使用减振台。Shock absorber43

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 保健医疗策划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁