《勾股定理复习课件 (2).ppt》由会员分享,可在线阅读,更多相关《勾股定理复习课件 (2).ppt(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 利用勾股定理利用勾股定理求解几何体的最短路线长求解几何体的最短路线长例例1、如图,是一个三级台阶,它的每一级的长、宽和、如图,是一个三级台阶,它的每一级的长、宽和高分别等于高分别等于5cm,3cm和和1cm,A和和B是这个台阶的两个是这个台阶的两个相对的端点,相对的端点,A点上有一只蚂蚁,想到点上有一只蚂蚁,想到B点去吃可口的点去吃可口的食物食物.请你想一想,这只蚂蚁从请你想一想,这只蚂蚁从A点出发,沿着台阶面点出发,沿着台阶面爬到爬到B点,最短线路是多少?点,最短线路是多少?BAABC531512一、台阶中的最值问题一、台阶中的最值问题 AB2=AC2+BC2=169,AB=13.二、圆柱
2、二、圆柱(锥锥)中的最值问题中的最值问题例2、有一圆形油罐底面圆的周长为24m,高为6m,一只老鼠从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?AB分析:由于老鼠是沿着圆柱的表面爬行的,故需把圆柱展开成平面图形.根据两点之间线段最短,可以发现A、B分别在圆柱侧面展开图的宽1m处和长24m的中点处,即AB长为最短路线.(如图)解:AC=6 1=5,BC=24 =12,由勾股定理得 AB2=AC2+BC2=169,AB=13(m).21BAC三、正方体中的最值问题三、正方体中的最值问题例3、如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是(
3、).(A)3 (B)5 (C)2 (D)1AB分析:由于蚂蚁是沿正方体的外表面爬行的,故需把正方体展开成平面图形(如图).CABC21例4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?ABA1B1DCD1C1214分析:根据题意分析蚂蚁爬行的路线有三种情况(如图),由勾股定理可求得图1中AC1爬行的路线最短.ABDCD1C1421 AC1=42+32=25 ;ABB1CA1C1412 AC1=62+12=37 ;AB1D1DA1C1412 AC1=52+22=29 .四、长方体中的最值问题四、长方体中的最值问题练习:在长长30cm30cm、宽、宽50 cm50 cm、高、高40 cm40 cm的木箱的木箱中,如果在箱内的A处有一只昆虫,它要在箱壁上爬行到B处,至少要爬多远?CDA.B.305040图305040CDA.B.ADCB305040CCDA.B.ACBD图304050304050CCDA.B.图50ADCB4030304050小 结:把几何体适当展开成平面图形,再利用“两点之间线段最短”,或点到直线“垂线段最短”等性质来解决问题。