《三角形的内角精选课件.ppt》由会员分享,可在线阅读,更多相关《三角形的内角精选课件.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、关于三角形的内角第一页,本课件共有24页学习目标:重点:难点:1、会阐述三角形内角和定理。2、会应用三角形内角和定理进行计算;(求三角形的角的度数)3、能通过动手实践去验证三角形的内角和定理。1、能用多种方法证明三角形内角和定理 2、会在证明中添加合适的辅助线。通过对三角形内角和定理内容的学习,会利用它解决生活实际中一些简单的有关角度计算的问题。第二页,本课件共有24页三角形两边的夹角叫做三角形的内角三角形的内角第三页,本课件共有24页在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊
2、!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了”“为什么?”老二很纳闷。同学们,你们知道其中的道理吗?内角三兄弟之争第四页,本课件共有24页如下图所示是我们常用的三角板,它们的三个角之和为多少度?想一想:任意三角形的三个内角之和也为180度吗?30+60+90=18045+45+90=180思考与探索第五页,本课件共有24页三角形的三个内角和是多少?把三个角拼在一起试试看?你有什么办法可以验证呢?从刚才拼角的过程你能想出证明的办法吗?180实践操作第六页,本课件共有24页安全文明网安全文明网 http:/ http:/ 第七页,本课件共有24页21EDCBA三角形的内角和等于18
3、00.延长BC到D,于是CEBA(内错角相等,两直线平行).B=2(两直线平行,同位角相等).1+2+ACB=180A+B+ACB=180在ABC的外部,以CA为一边,CE为另一边作1=A,证法一第八页,本课件共有24页21EDCBA三角形的内角和等于1800.延长BC到D,过C作CEBA,A=1(两直线平行,内错角相等)B=2(两直线平行,同位角相等)1+2+ACB=180A+B+ACB=180证法二第九页,本课件共有24页F21ECBA三角形的内角和等于1800.过A作EFBC,B=2(两直线平行,内错角相等)C=1(两直线平行,内错角相等)2+1+BAC=180B+C+BAC=180证法
4、三第十页,本课件共有24页CBEA三角形的内角和等于1800.过A作AEBC,B=BAE(两直线平行,内错角相等)EAB+BAC+C=180(两直线平行,同旁内角互补)B+C+BAC=180证法四第十一页,本课件共有24页 在这里,为了证明的需要,在原来的在这里,为了证明的需要,在原来的图形上添画的线叫做图形上添画的线叫做辅助线辅助线。在平面几何。在平面几何里,辅助线通常画成里,辅助线通常画成虚线虚线。为了证明三个角的和为为了证明三个角的和为1800,转化转化为一个平角或同旁内角互补为一个平角或同旁内角互补,这种这种转转化思想化思想是数学中的常用方法是数学中的常用方法.思路总结思路总结第十二页
5、,本课件共有24页(口答)下列各组角是同一个三角形的内角吗?为什么?(2)60,40,90(3)30,60,50(1)3,150,27(是是)(不是不是)(不是不是)巩固练习第十三页,本课件共有24页(1)在)在ABC中,中,A=35,B=43 则则 C=.(2)在)在ABC中,中,A:B:C=2:3:4则则A=B=C=.(3)一个三角形中最多有一个三角形中最多有 个直角?为什么?个直角?为什么?(4)一个三角形中最多有)一个三角形中最多有 个钝角?为什么?个钝角?为什么?(5)一个三角形中至少有)一个三角形中至少有 个锐角?为什么?个锐角?为什么?(6)任意一个三角形中)任意一个三角形中,最
6、大的一个角的度数至少为最大的一个角的度数至少为 .102 80 60 40 60211应用新知应用新知第十四页,本课件共有24页ABC已知ABC中,ABCC=2A,BD是AC边上的高,求DBC的度数。D解:设Ax0,则ABCC2x0 x2x2x180(三角形内角和定理)解得x36C2360720DBC1800900720(三角形内角和定理)在BDC中,BDC900(三角形高的定义)DBC180?例题讲解例题讲解1 1第十五页,本课件共有24页如图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80方向,C岛在B岛的北偏西40方向。求下面各题.(1)DAC_ DAB_ EBC_ CAB _ A(
7、2)从C岛看A、B两岛的视角C是多少?508040DBCE北北解:ADBE DABABE180 ABE 180DAB 180 80 100 在在ABC中中,C 180 CAB ABC 18030 60 90 ABCABE CBE30 100 4060例题讲解例题讲解2 2第十六页,本课件共有24页DCE北A50B40 北MN在AMC中 AMC=90,MAC=50解:过点C画MNAD分别交AD、BE于点M、N12例:如图,C岛在A岛的北偏东50方向,B岛在A岛的北偏东80方向,C岛在B岛的北偏西40方向。1=180-90-50=40 ADBE AMC+BNC=180 BNC=90同理得2=50
8、ACB=180 -1-2=180-40-50=90例题讲解例题讲解2 2第十七页,本课件共有24页BDCE北A 你能想出一个更简捷的方法来求C的度数吗?125040解:解:过点过点C画画CFAD 1DAC50,F CFAD,又又AD BE CF BE2CBE 40 ACB1 2 50 40 90 例题讲解例题讲解2 2第十八页,本课件共有24页解解:在在ACD中中 CAD 30 D 90 DABC ACD=180 -30 -90=6 0 在在BCD中中 CBD=45 D 90 BCD=180-90-45=45 ACB=ACD-BCD=6 0-45 巩固练习1.如图,从A处观测C处时仰角CAD3
9、0,从B处观测C处时仰角CBD45.从C处观测A、B两处时视角ACB是多少?第十九页,本课件共有24页2.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是 ()(A)带带去去(B)带带去去(C)带带去去(D)带带和和去去C巩固练习第二十页,本课件共有24页3.ABC中,若ABC,则ABC是()A、锐角三角形B、直角三角形 C、钝角三角形D、等腰三角形4.一个三角形至少有()A、一个锐角 B、两个锐角 C、一个钝角 D、一个直角BB巩固练习第二十一页,本课件共有24页甲楼高16米,乙楼座落在甲楼的正北面,已知当地冬至中午12点,太阳光线与水
10、平面夹角为450,如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应是多少?甲甲乙乙16米米450?45016米米解:由题意知ABCBC=AB=16答:两楼的距离是16米.拓展与思考1第二十二页,本课件共有24页小结1、三角形的内角和:三角形三个内角之和为1802、由三角形内角和等于180,可得出(1)、直角三角形两锐角互余;(2)、一个三角形最多有一个直角或钝角;(3)、任意一个三角形中,最多有三个锐角,最少有两个锐角;(4)、一个三角形中至少有一个角小于或等于603、三角形按角分类:三角形直角三角形斜三角形锐角三角形钝角三角形第二十三页,本课件共有24页感谢大家观看第二十四页,本课件共有24页