指数函数、对数函数.ppt

上传人:wuy****n92 文档编号:66033152 上传时间:2022-12-11 格式:PPT 页数:14 大小:271.49KB
返回 下载 相关 举报
指数函数、对数函数.ppt_第1页
第1页 / 共14页
指数函数、对数函数.ppt_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《指数函数、对数函数.ppt》由会员分享,可在线阅读,更多相关《指数函数、对数函数.ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.指数函数概念指数函数概念 一般地,函数一般地,函数y=ax(a0,且,且a1)叫做指数函数,其中叫做指数函数,其中x是是自自变变量,函数的定量,函数的定义义域是域是R2.2.指数函数的图象和性质指数函数的图象和性质(见下表见下表)在R上是减函数(4)在R上是增函数(3)过点(0,1),即x0时,y1(2)值域(0,)(1)定义域:Ra10a1性质图象4、用等号或不等号连接:1.52.5 _1.53.2;0.7-6_0.7-4;60.7_0.76 5、求解:(1)、3x30.5 (2)、0.2x25 6、函数y=4+ax-1的图像横过定点P,则定点P的坐标为_.以上以上5个问题解决我们体会到

2、:个问题解决我们体会到:抓基本函数想图像非常关键抓基本函数想图像非常关键 在在解决题解决题3和题和题6的问题中也可以看到:的问题中也可以看到:从基本函数出发,从基本函数出发,借助图像变换借助图像变换平移、平移、伸缩、对称变换,为我们解决复杂的问题增添伸缩、对称变换,为我们解决复杂的问题增添了一对飞翔的翅膀。了一对飞翔的翅膀。练习练习(1 1)当当0a1,b0且且a1,b为实数为实数)的图象恒过定点的图象恒过定点(1,2),则,则b=_.A-2例例4设a是实数,1.试证明对于任意a,为增函数。2.是否存在实数a使函数f(x)为奇函数变式训练:8、(2008,江阴一模)要使g(x)=的图像不经过第

3、二象限,则a的取值范围是 _.9、(2004,湖南理)若直线y=2a与函数y=|ax1|(a0且a1)的图象有两个公共点,则a的取值范围是_.例例1 判断函数判断函数 的奇偶性。的奇偶性。变:变:若函数若函数 为奇函数,求为奇函数,求a。例例2 若若f(x)在在R上是奇函数,当上是奇函数,当x(0,+)时为增函数,时为增函数,且且f(1)=0,则不等式,则不等式f(x)0的解集为的解集为例例3 若若f(x)是定义在是定义在-1,1上的奇函数,且在上的奇函数,且在-1,1是单调是单调增函数,求不等式增函数,求不等式f(x-1)+f(2x)0的解集的解集.二、对数函数的图象和性质二、对数函数的图象

4、和性质图图象象a10a1性性 质质 补补充充性性质质xyo(1,0)xyo(1,0)(1)定义域定义域:(0,+)(2)值域:值域:R (3)过点过点(1,0),即即x=1 时时,y=0(5)0 x1时时,y1时时,y0(5)0 x0;x1时时,y0(4)在在(0,+)上是增函上是增函数数(4)在在(0,+)上是减函上是减函数数1 1o oxyxyo o1 1a1a3a2a1a2a3y=logax0 a 1比较底数比较底数图图 像像二、对数函数的图象和性质二、对数函数的图象和性质图图象象a10a1性性 质质 补补充充性性质质xyo(1,0)xyo(1,0)(1)定义域定义域:(0,+)(2)值

5、域:值域:R (3)过点过点(1,0),即即x=1 时时,y=0(5)0 x1时时,y1时时,y0(5)0 x0;x1时时,y0(4)在在(0,+)上是增函上是增函数数(4)在在(0,+)上是减函上是减函数数底数越大越近底数越大越近x轴轴底数越小越近底数越小越近x轴轴例比较大小:例比较大小:log23 log23.5log0.71.6 log0.71.8loga4 loga3.14log35 log54 log56 log47 logx5 log(x-1)5例例1 判断函数判断函数 的单调性。的单调性。例例2 求函数求函数y=log 0.5(x2-1)的单调区间。的单调区间。例例3 若函数若函数y=x2+ax+1在在-1,1上是单调函数,上是单调函数,求求a的取值范围。的取值范围。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁