《最新高三数学知识点归纳.docx》由会员分享,可在线阅读,更多相关《最新高三数学知识点归纳.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、最新高三数学知识点归纳高三数学知识点归纳大全高中数学知识点包括集合与函数、三角函数、不等式、数列、复数、排列、组合、二项式定理、立体几何、平面解析几何等部分。1、集合与函数内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数。正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。2、三角函数三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。
2、正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值。3、不等式解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图
3、建模构造法。4、数列等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。5、复数虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期
4、现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。高三数学知识点归纳第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。第二:平面向量和三角函数。重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数
5、和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。第三:数列。数列这个板块,重点考两个方面:一个通项;一个是求和。第四:空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。第五:概率和统计。这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。第六:解析几何。该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原
6、因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。第七:押轴题。考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。数学试题点评1.立足学科基础,强调能力立意命题以中学数学基础知识为载体,坚持能力立意,全面考查了空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。如理15、文16以集合语言、常用逻辑用语为载体,强调正确推理的形式和规则,突出考查抽象概括能力和推理论证能力;理17涉及的图
7、形翻折及文19的“割补”或“等积变换”需要考生分析图形中基本元素及其相互关系,突出考查空间想象能力;理19的解答,考生可从特殊入手,通过合情推理得出结论并加以验证,也可通过演绎推理直接证明,突出考查推理论证能力;文12以椭圆的定义为载体,探究在新情境下“椭圆”生成的基本步骤和图形特征,重现“轨迹”的基本研究方法,突出考查抽象概括能力;理10以计数原理为载体,需要考生从题干及备选项中领悟将“选球方式”抽象为“颜色模式”,考查抽象概括能力与学习潜能。2.关注数学本质,突出价值命题立足数学本质,从数学各分支的核心内容、学科思想以及相关分支的教育价值入手设置试题,合理地检测学生的基本数学素养。如统计与
8、概率突出考查对统计量的理解与应用以及运用样本估计总体的思想,要求考生不仅会计算统计量而且会合理地根据统计量对问题作出分析与解释;函数与导数的考查突出导数的工具作用,考查考生在解题过程中对“常量”与“变量”辩证关系的理解以及综合运用导数研究函数性质的能力;解析几何突出“解析法”,要求考生将几何问题代数化,并合理地运用代数手段解决几何问题,体现解析几何的基本思想;立体几何突出对空间想象能力与推理论证能力的考查;三角突出三角变换及三角函数的图象与性质的研究;数列关注等差数列、等比数列的基本性质与运算,突出“基本量法”。3.坚持课标理念,凸显导向功能命题紧扣课标理念,充分发挥对中学数学教学的正确导向作
9、用。其一,引导中学数学教学全面落实课程标准,不随意忽视所谓的“冷门知识”,如理19、理14等。其二,引导中学数学教学回归教材,克服脱离教材的“题海战术”,如理8、文18等取材于教材习题的合理改造。其三,引导中学数学教学关注通性通法,淡化特殊技巧,每道试题的解题思路都是在数学思想方法的统领下自然形成的,试题的设计追求“新而不难,难而不怪”。其四,引导中学数学教学既关注“结果性知识”,也关注“过程性知识”,使学生既知其然,又知其所以然,如理10、理18等。其五,引导中学数学教学基于已有知识与方法的创造性运用而关注创新意识的培养,如理10以多项式展开式为背景,考查考生创造性地解决新情境下的数学问题;文12依托新情境材料,考查考生阅读理解、提取相关信息解决问题的能力。