阶跃响应冲激响应优秀课件.ppt

上传人:石*** 文档编号:65051915 上传时间:2022-12-02 格式:PPT 页数:51 大小:3.37MB
返回 下载 相关 举报
阶跃响应冲激响应优秀课件.ppt_第1页
第1页 / 共51页
阶跃响应冲激响应优秀课件.ppt_第2页
第2页 / 共51页
点击查看更多>>
资源描述

《阶跃响应冲激响应优秀课件.ppt》由会员分享,可在线阅读,更多相关《阶跃响应冲激响应优秀课件.ppt(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、阶跃响应冲激响应第1页,本讲稿共51页 阶跃响应和冲激响应阶跃响应和冲激响应 本章重点 阶跃函数和冲激函数阶跃函数和冲激函数 卷积积分卷积积分 返回目录 电容电压和电感电流的跃变电容电压和电感电流的跃变 第2页,本讲稿共51页9.1 9.1 阶跃函数和冲激函数阶跃函数和冲激函数 一、单位阶跃函数(一、单位阶跃函数(unit step function)1.定义定义 t(t)10用可描述开关的动作。+uCUS(t)RCUSS+uCRC开关在t=0 时闭合 第3页,本讲稿共51页2.延迟的单位阶跃函数 t(t-t0)t003.由单位阶跃函数可组成复杂的信号由单位阶跃函数可组成复杂的信号 USS+u

2、CRC开关在t=t0 时闭合 第4页,本讲稿共51页t0t-(t-t0)(t)0f(t)1解解所示矩形脉冲可分解为阶跃函数和延迟阶跃函数相加。所示矩形脉冲可分解为阶跃函数和延迟阶跃函数相加。例11t0tf(t)0试用阶跃函数表示上图所示的矩形脉冲。试用阶跃函数表示上图所示的矩形脉冲。第5页,本讲稿共51页11t001t1f(t)例2 试用阶跃函数表示图示的波形。解解 f(t)分成两段表示。分成两段表示。1t101t1+(0 t 1)(10时,可用三要素法得到其解。时,可用三要素法得到其解。第15页,本讲稿共51页t0若激励在若激励在 t=t0 时加入,时加入,则响应从则响应从 t=t0开始。开

3、始。t-t0(t-t0)iCt0注意 t(t-t0)不要写为 f(t)f(t)(t)f(t)(t-t0)t0f(t-t0)(t-t0)(t-t0)C+uCRt0t0f(t)(t)第16页,本讲稿共51页解解 10k10k+-iC1100FuC(0-)=010k10k+-iC2100FuC(0-)=0由叠加定理有由叠加定理有 例 求图示电路中电流 iC(t)10k10kuS+-iC100FuC(0-)=00.510t/suS/V0第17页,本讲稿共51页等效 5k+-iC2100FuC(0-)=010k10k+-iC1100FuC(0-)=0由线性、齐次和时不变性质,得由线性、齐次和时不变性质,

4、得 10k10k+-iC100FuC(0-)=0第18页,本讲稿共51页分段表示为分段表示为 t/si/mA01-0.6320.5波形 0.368也可用时间分段形式表示 第19页,本讲稿共51页二、二阶电路的阶跃响应已知已知 uC(0-)=0,i(0-)=0以以uC为变量微分方程为为变量微分方程为RLC+-uCi+-以以RLC串联电路为例讨论。串联电路为例讨论。二阶常系数非齐次微分方程。二阶常系数非齐次微分方程。上述微分方程等价于:上述微分方程等价于:第20页,本讲稿共51页特征根为 按特征根的不同情况,通解(自由分量)有三种不按特征根的不同情况,通解(自由分量)有三种不同形式,同形式,uC解

5、答可表示为解答可表示为过阻尼情况过阻尼情况临界阻尼情况临界阻尼情况欠阻尼情况欠阻尼情况返回目录第21页,本讲稿共51页9.3 9.3 冲激响应冲激响应 零状态 h(t)冲激响应冲激响应(impulse response):电路在冲激激励作用下):电路在冲激激励作用下的的零状态响应。的的零状态响应。方法一方法一:分两个时间段来考虑分两个时间段来考虑 (1)t 在在 0-0+;(2)t 0+。分析冲激响应时,分析冲激响应时,时间范围为时间范围为 0 到到 t。t0第22页,本讲稿共51页(1)t 在在 0-0+间间 (2)t 0+零输入响应。零输入响应。iCiSRC+uC例1已知:求:iS(t)为

6、单位冲激时电路的响应uC(t)和 iC(t)。定性分析定性分析 uC(0)=0,电容相当于短路,电容相当于短路 第23页,本讲稿共51页(2)t 0+RC放电放电 iCRC+uC(1)t 在在 0-0+间间 解uC不是冲激,仅是有限的跳变。不是冲激,仅是有限的跳变。=1=0第24页,本讲稿共51页t/suC/V0冲激响应为t/siC/A0第25页,本讲稿共51页(1)t 在在 0-0+间间定性分析定性分析 例2已知求 uS 为单位冲激时的电路响应iL(t)和uL(t)。解解 =1=0i不是冲激,不是冲激,仅是有限的跳变仅是有限的跳变 RL+-iLuS+-uL第26页,本讲稿共51页(2)t 0

7、+RL放电 tiL0tuL0LiLR+-uL冲激响应为冲激响应为 第27页,本讲稿共51页(1)t 在在 0-0+间间(2)t 0+RC放电放电 例3已知:求:uS 为单位冲激时电路响应 iC(t)和uC(t)。iCRC+uC-+-iCRuS+uC-解解电容短路电容短路冲激响应为第28页,本讲稿共51页方法二:利用阶跃响应求冲激响应。零状态h(t)零状态s(t)f(t)t0第29页,本讲稿共51页求冲激响应。求冲激响应。已知单位阶跃响应 例+-iCRuS+uC-解解 返回目录第30页,本讲稿共51页9.4 9.4 电路在任意激励作用下的零状态响应电路在任意激励作用下的零状态响应 卷积积分卷积积

8、分一、卷积积分一、卷积积分(convolution)定义定义 设设 f1(t),f2(t)在在 t 0时均为零时均为零 性质性质1 应用:求任意波形激励下的零状态响应。应用:求任意波形激励下的零状态响应。e(t)r(t)零状态线性网络h(t)第31页,本讲稿共51页证明 令令 =t-:0 t :t 0性质性质2 筛分性 =f(t)二、卷积积分的二、卷积积分的物理解释物理解释 e(0)将e(t)在作用时间0 t 内划分为n等分,每个间隔为第32页,本讲稿共51页单位脉冲函数的延时 e(0)2k(k+1)第33页,本讲稿共51页第1个矩形脉冲 若单位脉冲函数若单位脉冲函数 p(t)的响应为的响应为

9、 h p(t)第第k个矩形脉冲个矩形脉冲 激励 响应 第34页,本讲稿共51页脉冲响应响应响应 脉冲函数激励激励 冲激函数 冲激响应 积分卷积积分卷积积分-叠加积分叠加积分 第35页,本讲稿共51页被积函数 积分变量 参变量 三、卷积积分的图解说明 f2(-)10f1(t)201tf2(t)10tf1()201第36页,本讲稿共51页1ttt卷卷 移移 乘乘 积积 f2()10f2(t-)10 t1f1()f2(t-)02f2(-)10f1()201ttf1(t)*f2(t)0t1t第37页,本讲稿共51页由图解过程确定积分上下限 1 201e-(-)t01ttt-1t0102-11e-法二法

10、二 e-(t-)tttt法一法一 第38页,本讲稿共51页解解 先求该电路的冲激响应先求该电路的冲激响应 h(t)uC()=0例例1.已知:已知:R=500 k ,C=1 F,uC(0)=0求:求:uC(t)。iCRiSC+uC四、应用举例 第39页,本讲稿共51页再由卷积积分计算当再由卷积积分计算当 iS=2e t (t)mA 时的响应时的响应 uC(t):第40页,本讲稿共51页r(t)=iS*h(t)=h(t)*iS 此卷积积分需分段进行此卷积积分需分段进行 例2 已知线性网络冲激响应为h(t),求此网络激励为图示iS时的零状态响应。h(t)23t0tiS042is(t)零状态线性网络h

11、(t)iS04232第41页,本讲稿共51页0 t 2 2 t 3 3 t 5 r(t)=0043-2 思考 如何划分时间段?确定积分上下限。2042 3 46t02tt-3返回目录第43页,本讲稿共51页9.5 9.5 电容电压和电感电流的跃变电容电压和电感电流的跃变在换路瞬间,若电容中流过冲激电流时,电容在换路瞬间,若电容中流过冲激电流时,电容电压可能发生跃变,此时电容的瞬时充电(或放电)电压可能发生跃变,此时电容的瞬时充电(或放电)功率为无穷大。功率为无穷大。在换路瞬间,若电感两端出现冲激电压时,在换路瞬间,若电感两端出现冲激电压时,电感中的电流可能发生跃变,此时电感的瞬时充电感中的电流

12、可能发生跃变,此时电感的瞬时充电(或放电)功率为无穷大。电(或放电)功率为无穷大。第44页,本讲稿共51页一、电容电压的跃变例例1 理想电压源瞬间加在纯电容理想电压源瞬间加在纯电容C两端。两端。则电容电压可以表示为则电容电压可以表示为 SuCC+US+iCuC,iCtoUSuC iC 电容中电流为电容中电流为 第45页,本讲稿共51页例2 电路如图所示。S+R1uC2C1+US+C2uC1iC1iC2AR2以以uC1为变量,可列些出方程如下:为变量,可列些出方程如下:由上述方程可知,电容电压由上述方程可知,电容电压uC1应为有限值。再根据应为有限值。再根据KVL,uC2也应为有限值。也应为有限

13、值。第46页,本讲稿共51页节点A的KCL方程:在在0 0区间对上式积分,并整理得区间对上式积分,并整理得式式(1)表明节点表明节点A满足电荷守恒。其中满足电荷守恒。其中uC1(0+)、uC2(0+)待求。待求。再根据再根据KVL,有,有当当uC1(0)0、uC2(0)0时,联立求解式(时,联立求解式(1)和式()和式(2)可求得可求得第47页,本讲稿共51页由此可用三要素法得到此一阶电路的解:其时间常数为其时间常数为换路后达稳态时有换路后达稳态时有所以电容电压分别为所以电容电压分别为第48页,本讲稿共51页对电容电压的全时间域表达式求导,可得电容电流为小结:小结:一一般般情情况况下下,当当换

14、换路路后后电电路路中中出出现现由由理理想想电电压压源源和和电电容容(或或全全部部由由电电容容)构构成成的的回回路路时时,则则电电容容电电压压可可能能发发生跃变。生跃变。分分析析方方法法是是:首首先先根根据据KVL,列列写写换换路路后后瞬瞬间间电电容容电电压压与与电电压压源源电电压压的的约约束束方方程程;然然后后再再根根据据节节点点电电荷荷守守恒恒写写出出有有关关电电压压的的方方程程;最最后后根根据据上上述述所所列列方方程程便便可可求求出待求电压的值,从而可知电容电压是否跃变。出待求电压的值,从而可知电容电压是否跃变。第49页,本讲稿共51页二、电感电流的跃变电感电流可能发生跃变的情况,与电容的

15、情况是对偶的。电感电流可能发生跃变的情况,与电容的情况是对偶的。结论如下:结论如下:一一般般情情况况下下,当当换换路路后后电电路路中中出出现现由由理理想想电电流流源源和和电电感感(或或全全部部由由电电感感)构构成成的的割割集集时时,则则电电感感电电流流可可能能发发生跃变。生跃变。分分析析方方法法是是:首首先先根根据据KCL,列列写写换换路路后后瞬瞬间间电电感感电电流流与与电电流流源源电电流流的的约约束束方方程程;然然后后再再根根据据回回路路磁磁链链守守恒恒写写出出有有关关电电流流的的方方程程;最最后后根根据据上上述述所所列列方方程程便便可可求求出待求电流的值,从而可知电感电流是否跃变。出待求电流的值,从而可知电感电流是否跃变。第50页,本讲稿共51页例 电路如图所示。t=0时开关S断开。求iL1,iL2。+uSR1SR2L1L2iL1iL2A开关开关S断开后,出现了由两个电感断开后,出现了由两个电感L1和和L2构成的节点构成的节点A。首先对节点首先对节点A应用应用KCL,有,有 再根据回路磁链守恒,有再根据回路磁链守恒,有联立解上述两个方程,得联立解上述两个方程,得返回目录第51页,本讲稿共51页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁