八年级上册《等腰三角形的轴对称性》1导学设计.docx

上传人:w**** 文档编号:62967773 上传时间:2022-11-23 格式:DOCX 页数:7 大小:19.33KB
返回 下载 相关 举报
八年级上册《等腰三角形的轴对称性》1导学设计.docx_第1页
第1页 / 共7页
八年级上册《等腰三角形的轴对称性》1导学设计.docx_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《八年级上册《等腰三角形的轴对称性》1导学设计.docx》由会员分享,可在线阅读,更多相关《八年级上册《等腰三角形的轴对称性》1导学设计.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级上册等腰三角形的轴对称性1导学设计八年级上册等腰三角形的轴对称性2导学设计 八年级上册等腰三角形的轴对称性2导学设计 2.5等腰三角形的轴对称性(2) 教学目标 1驾驭等腰三角形的判定定理 2知道等边三角形的性质以及等边三角形的判定定理 3经验折纸、画图、视察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确相识事物的重要途径 4会用“因为所以理由是”或“依据因为所以”等方式来进行说理,进一步发展有条理地思索和表达,提高演绎推理的实力 教学重点 娴熟地驾驭等腰三角形的判定定理 教学难点 正确娴熟地运用定理解决问题及简洁地逻辑推理 教学过程(老师活动) 学生活动

2、 设计思路 前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的相识 本节课我们将接着学习等腰三角形的轴对称性 一、创设情境 如图所示ABC是等腰三角形,ABAC,它的一部分被墨水涂没了,只留下一条底边BC和一个底角C请同学们想一想,有没有方法把原来的等腰三角形ABC重新画出来?大家试试看 1学生视察思索,提出猜想 2小组沟通探讨 一方面回忆等边对等角及其探讨方法,为学生探讨等角对等边供应探讨的方法,另一方面通过创设情境,自然地引入课题 二、探究发觉一 请同学们分别拿出一张半透亮纸,做一个试验,按以下方法进行操作: (1)在半透亮纸上画一条长为6cm的线段BC (2)以BC为始边,分别以点

3、B和点C为顶点,在BC的同侧用量角器画两个相等的锐角,两角终边的交点为A (3)用刻度尺找出BC的中点D,连接AD,然后沿AD对折 问题1:AB与AC有什么数量关系? 问题2:请用语言叙述你的发觉 1依据试验要求进行操作 2画出图形、视察猜想 3小组合作沟通、展示学习成果 演示折叠过程为进一步的说理和推理供应思路 通过动手操作、演示、视察、猜想、体验、感悟等学习活动,获得学问为今后学生进行探究活动积累数学活动阅历 三、分析证明 思索:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢? 问题3:已知如图,在ABC中, BC求证:ABAC 引导学分析问题,综合证明 思索:你还有不同的证明

4、方法吗? 问题4:“等边对等角”与“等角对等边”,它们有什么区分和联系? 思索探讨展示 1学生独立完成证明过程的基础上进行小组沟通 2班级展示:小组代表展示学习成果 在试验的基础上获得问题解决的思路,在合情推理的基础上让学生经验演绎推理的过程,培育学生的逻辑思维实力 通过“你有不同的证明方法吗”的问题,让学生学会质疑,学会从不同的角度思索问题,培育学生的发散性思维,激发探究问题的欲望和爱好,通过对问题4的思索让学生加深对性质与判定的理解 四、探究发觉二 问题5:什么是等边三角形?等边三角形与等腰三角形有什么区分和联系? 问题6:等边三角形有什么性质? 问题7:一个三角形满意什么条件就是等边三角

5、形了?为什么? 1学生阅读教材,进行自主学习 2小组探讨沟通 3展示学习成果:等边三角形的概念、等边三角形的性质、 等边三角形的判定 培育学生阅读教材的学习习惯和自主学习实力 引导学生经验合情推理和演绎推理的过程,感受合情推理和演绎推理都是人们相识事物的重要途径 五、学以致用 请同学完成课本P6364练习第1、2、3题 学生独立思索、小组探讨、展示沟通、相互评价 引导学生学会分析问题和解决问题,理解分析和综合之间的关系,培育学生分析问题和解决问题的实力 巩固学习成果,加强学问的理解和方法的应用,培育分析问题、解决问题的实力 六、归纳小结 1这节课你有怎样的收获?还有哪些困惑呢? 2布置作业:

6、课本P67习题2.5第7、8、10题 1学生以小组为单位归纳本节课所学习的学问、方法 2展示沟通,相互补充,建立学问体系 3探讨困惑问题 4完成作业 引导学生进行学问归纳整理,学会学习,培育学生发觉问题、提出问题的学习实力 等腰三角形1导学案 12.3.1等腰三角形(1)一、学习目标:1、巩固等腰三角形的概念,驾驭等腰三角形的性质,并能敏捷应用等腰三角形的性质解决一些实际问题。2、通过独立思索,沟通合作,体会探究数学结论的过程,发展推理实力。3、激情投入,收获胜利。二、重点难点学习重点:等腰三角形性质的探究及应用学习难点:等腰三角形性质的应用三、合作探究(同学合作,老师引导)1、复习回顾:1.

7、三角形全等的判定方法2.有两条边相等的三角形,叫叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角2、用剪刀根据49页介绍的方法,剪出一个等腰三角形,想一想,它是轴对称图形吗?假如是,它的对称轴是什么?3、将2中的等腰三角形沿对称轴对折,找出重合的线段和角,由此你发觉了等腰三角形的哪些性质?性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。你能证明这两特性质吗?4、填空:如图1,在ABC中1AB=AC,BAD=CADBD=,。2AB=AC,BD=CDBAD=,.3AB=AC

8、,ADBCBAD=,BD=.四、精讲精练例1、如图2,在ABC中,AB=AC,点D在AC上,且BD=BC=AD.求ABC各角的度数。 例2、已知一个等腰三角形两个内角的度数之比为1:4,则这个等腰三角形顶角的度数为。例3、如图3,在ABC中,AB=AC,点D、E在BC上,且AD=AE.求证:BD=CE 练习:1、如图4,AB=AE,BC=DE,B=E,AMCD,垂足为点M求证:CM=DM2、等腰三角形一腰上的高和另一腰的夹角为40o,则底角为。3、如图5,在ABC中,AB=AC,A=30o,BF=CE,BD=CF,求DFE的度数。 五、课堂小结:腰三角形的哪些性质?性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。六、作业:P511、3 第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁