《2018年全国各地中考数学选择、填空压轴题汇编(三)(共30页).doc》由会员分享,可在线阅读,更多相关《2018年全国各地中考数学选择、填空压轴题汇编(三)(共30页).doc(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2018年全国各地中考数学选择、填空压轴题汇编(三)参考答案与试题解析一选择题(共20小题)1(2018青岛)如图,三角形纸片ABC,AB=AC,BAC=90,点E为AB中点沿过点E的直线折叠,使点B与点A重合,折痕相交于点F已知EF=,则BC的长是()A B C3 D解:沿过点E的直线折叠,使点B与点A重合,B=EAF=45,AFB=90,点E为AB中点,EF=AB,EF=,AB=AC=3,BAC=90,BC=3,故选:B2(2018淄博)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则ABC的面积为()A B C D解:ABC
2、为等边三角形,BA=BC,可将BPC绕点B逆时针旋转60得BEA,连EP,且延长BP,作AFBP于点F如图,BE=BP=4,AE=PC=5,PBE=60,BPE为等边三角形,PE=PB=4,BPE=60,在AEP中,AE=5,AP=3,PE=4,AE2=PE2+PA2,APE为直角三角形,且APE=90,APB=90+60=150APF=30,在直角APF中,AF=AP=,PF=AP=在直角ABF中,AB2=BF2+AF2=(4+)2+()2=25+12则ABC的面积是AB2=(25+12)=故选:A3(2018枣庄)如图,在矩形ABCD中,点E是边BC的中点,AEBD,垂足为F,则tanBD
3、E的值是()A B C D解:四边形ABCD是矩形,AD=BC,ADBC,点E是边BC的中点,BE=BC=AD,BEFDAF,=,EF=AF,EF=AE,点E是边BC的中点,由矩形的对称性得:AE=DE,EF=DE,设EF=x,则DE=3x,DF=2x,tanBDE=;故选:A4(2018东营)如图,点E在DBC的边DB上,点A在DBC内部,DAE=BAC=90,AD=AE,AB=AC给出下列结论:BD=CE;ABD+ECB=45;BDCE;BE2=2(AD2+AB2)CD2其中正确的是()A B C D解:DAE=BAC=90,DAB=EACAD=AE,AB=AC,DABEAC,BD=CE,
4、ABD=ECA,故正确,ABD+ECB=ECA+ECB=ACB=45,故正确,ECB+EBC=ABD+ECB+ABC=45+45=90,CEB=90,即CEBD,故正确,BE2=BC2EC2=2AB2(CD2DE2)=2AB2CD2+2AD2=2(AD2+AB2)CD2故正确,故选:A5(2018枣庄)如图,在RtABC中,ACB=90,CDAB,垂足为D,AF平分CAB,交CD于点E,交CB于点F若AC=3,AB=5,则CE的长为()A B C D解:过点F作FGAB于点G,ACB=90,CDAB,CDA=90,CAF+CFA=90,FAD+AED=90,AF平分CAB,CAF=FAD,CF
5、A=AED=CEF,CE=CF,AF平分CAB,ACF=AGF=90,FC=FG,B=B,FGB=ACB=90,BFGBAC,=,AC=3,AB=5,ACB=90,BC=4,=,FC=FG,=,解得:FC=,即CE的长为故选:A6(2018东营)如图所示,已知ABC中,BC=12,BC边上的高h=6,D为BC上一点,EFBC,交AB于点E,交AC于点F,设点E到边BC的距离为x则DEF的面积y关于x的函数图象大致为()A B C D解:过点A向BC作AHBC于点H,所以根据相似比可知: =,即EF=2(6x)所以y=2(6x)x=x2+6x(0x6)该函数图象是抛物线的一部分,故选:D7(20
6、18烟台)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B两点重合,MN是折痕若BM=1,则CN的长为()A7 B6 C5 D4解:连接AC、BD,如图,点O为菱形ABCD的对角线的交点,OC=AC=3,OD=BD=4,COD=90,在RtCOD中,CD=5,ABCD,MBO=NDO,在OBM和ODN中,OBMODN,DN=BM,过点O折叠菱形,使B,B两点重合,MN是折痕,BM=BM=1,DN=1,CN=CDDN=51=4故选:D8(2018烟台)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿ADC方向匀速运动,
7、同时点Q从点A出发,以2cm/s的速度沿ABC方向匀速运动,当一个点到达点C时,另一个点也随之停止设运动时间为t(s),APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A BC D解:由题意得:AP=t,AQ=2t,当0t4时,Q在边AB上,P在边AD上,如图1,SAPQ=APAQ=t2,故选项C、D不正确;当4t6时,Q在边BC上,P在边AD上,如图2,SAPQ=APAB=4t,故选项B不正确;故选:A9(2018烟台)如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56 B62 C68 D78解:点I是A
8、BC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选:C10(2018潍坊)如图,菱形ABCD的边长是4厘米,B=60,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止若点P、Q同时出发运动了t秒,记BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A B C D解:当0t2时,S=2t(4t)=t2+4t;当2t4时,S=4(4t)=2t+8;只有选项D的图
9、形符合故选:D11(2018烟台)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(1,0),B(3,0)下列结论:2ab=0;(a+c)2b2;当1x3时,y0;当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x2)22其中正确的是()A B C D解:图象与x轴交于点A(1,0),B(3,0),二次函数的图象的对称轴为x=1=12a+b=0,故错误;令x=1,y=ab+c=0,a+c=b,(a+c)2=b2,故错误;由图可知:当1x3时,y0,故正确;当a=1时,y=(x+1)(x3)=(x1)24将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线
10、y=(x11)24+2=(x2)22,故正确;故选:D12(2018威海)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH若BC=EF=2,CD=CE=1,则GH=()A1 B C D解:如图,延长GH交AD于点P,四边形ABCD和四边形CEFG都是矩形,ADC=ADG=CGF=90,AD=BC=2、GF=CE=1,ADGF,GFH=PAH,又H是AF的中点,AH=FH,在APH和FGH中,APHFGH(ASA),AP=GF=1,GH=PH=PG,PD=ADAP=1,CG=2、CD=1,DG=1,则GH=PG=,故选:C13(2018泰安
11、)如图,M的半径为2,圆心M的坐标为(3,4),点P是M上的任意一点,PAPB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A3 B4 C6 D8解:PAPB,APB=90,AO=BO,AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交M于点P,当点P位于P位置时,OP取得最小值,过点M作MQx轴于点Q,则OQ=3、MQ=4,OM=5,又MP=2,OP=3,AB=2OP=6,故选:C14(2018威海)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积
12、是()A18+36 B24+18 C18+18 D12+18解:作FHBC于H,连接FH,如图,点E为BC的中点,点F为半圆的中点,BE=CE=CH=FH=6,AE=6,易得RtABEEHF,AEB=EFH,而EFH+FEH=90,AEB+FEH=90,AEF=90,图中阴影部分的面积=S正方形ABCD+S半圆SABESAEF=1212+6212666=18+18故选:C15(2018临沂)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点则下列说法:若AC=BD,则四边形EFGH为矩形;若ACBD,则四边形EFGH为菱形;若四边形EFGH是平行四边形,则AC与BD互相平
13、分;若四边形EFGH是正方形,则AC与BD互相垂直且相等其中正确的个数是()A1 B2 C3 D4解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线ACBD时,中点四边形是矩形,当对角线AC=BD,且ACBD时,中点四边形是正方形,故选项正确,故选:A16(2018德州)如图,等边三角形ABC的边长为4,点O是ABC的中心,FOG=120,绕点O旋转FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:OD=OE;SODE=SBDE;四边形ODBE的面积始终等于;BDE周长的最小值为6上述结论中正确的个数是()A1 B2 C3 D4解:
14、连接OB、OC,如图,ABC为等边三角形,ABC=ACB=60,点O是ABC的中心,OB=OC,OB、OC分别平分ABC和ACB,ABO=OBC=OCB=30BOC=120,即BOE+COE=120,而DOE=120,即BOE+BOD=120,BOD=COE,在BOD和COE中,BODCOE,BD=CE,OD=OE,所以正确;SBOD=SCOE,四边形ODBE的面积=SOBC=SABC=42=,所以正确;作OHDE,如图,则DH=EH,DOE=120,ODE=OEH=30,OH=OE,HE=OH=OE,DE=OE,SODE=OEOE=OE2,即SODE随OE的变化而变化,而四边形ODBE的面积
15、为定值,SODESBDE;所以错误;BD=CE,BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OEBC时,OE最小,BDE的周长最小,此时OE=,BDE周长的最小值=4+2=6,所以正确故选:C17(2018聊城)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A(,) B(,) C(,) D(,)解:过点C1作C1Nx轴于点N,过点A1作A1Mx轴于点M,由题意可得:C1NO=A1MO=90,1=2=3,则A1
16、OMOC1N,OA=5,OC=3,OA1=5,A1M=3,OM=4,设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(,)故选:A18(2018滨州)如图,AOB=60,点P是AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则PMN周长的最小值是()A B C6 D3解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,BOP=BOD,AOP=AOC,PN+PM+MN=ND+MN+NC=DC,COD=
17、BOP+BOD+AOP+AOC=2AOB=120,此时PMN周长最小,作OHCD于H,则CH=DH,OCH=30,OH=OC=,CH=OH=,CD=2CH=3故选:D19(2018菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A B C D解:二次函数y=ax2+bx+c的图象开口向上,a0,该抛物线对称轴位于y轴的右侧,a、b异号,即b0当x=1时,y0,a+b+c0一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选:B20(2018滨州)如果规定x表示不大于x的最大
18、整数,例如2.3=2,那么函数y=xx的图象为()A BC D解:当1x0,x=1,y=x+1当0x1时,x=0,y=x当1x2时,x=1,y=x1故选:A二填空题(共16小题)21(2018青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为解:四边形ABCD为正方形,BAE=D=90,AB=AD,在ABE和DAF中,ABEDAF(SAS),ABE=DAF,ABE+BEA=90,DAF+BEA=90,AGE=BGF=90,点H为BF的中点,GH=BF,BC=5、CF=CDDF=52=3,BF=,G
19、H=BF=,故答案为:22(2018枣庄)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为95解:四边形ABCD是正方形,ABC=90,把边BC绕点B逆时针旋转30得到线段BP,PB=BC=AB,PBC=30,ABP=60,ABP是等边三角形,BAP=60,AP=AB=2,AD=2,AE=4,DE=2,CE=22,PE=42,过P作PFCD于F,PF=PE=23,三角形PCE的面积=CEPF=(22)(23)=95,故答案为:9523(2018青岛)如图,RtABC,B=90,C=30,O为AC上一点,O
20、A=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是解:B=90,C=30,A=60,OA=OF,AOF是等边三角形,COF=120,OA=2,扇形OGF的面积为: =OA为半径的圆与CB相切于点E,OEC=90,OC=2OE=4,AC=OC+OA=6,AB=AC=3,由勾股定理可知:BC=3ABC的面积为:33=OAF的面积为:2=,阴影部分面积为: =故答案为: 24(2018枣庄)如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的
21、面积是12解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,此时BP最小,即BPAC,BP=4,由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,PA=3,AC=6,ABC的面积为:46=12故答案为:1225(2018东营)在平面直角坐标系内有两点A、B,其坐标为A(1,1),B(2,7),点M为x轴上的一个动点,若要使MBMA的值最大,则点M的坐标为解:取点B关于x轴的对称点B,则直线AB交x轴于点M点M即为所求设直线AB解析式为:y=kx+b把点A(1,1)B(2,7)代入解得直线AB为:
22、y=2x3,当y=0时,x=M坐标为(,0)故答案为:(,0)26(2018烟台)如图,反比例函数y=的图象经过ABCD对角线的交点P,已知点A,C,D在坐标轴上,BDDC,ABCD的面积为6,则k=3解:过点P做PEy轴于点E四边形ABCD为平行四边形AB=CD又BDx轴ABDO为矩形AB=DOS矩形ABDO=SABCD=6P为对角线交点,PEy轴四边形PDOE为矩形面积为3即DOEO=3设P点坐标为(x,y)k=xy=3故答案为:327(2018东营)如图,在平面直角坐标系中,点A1,A2,A3,和B1,B2,B3,分别在直线y=x+b和x轴上OA1B1,B1A2B2,B2A3B3,都是等
23、腰直角三角形如果点A1(1,1),那么点A2018的纵坐标是解:分别过点A1,A2,A3,向x轴作垂线,垂足为C1,C2,C3,点A1(1,1)在直线y=x+b上代入求得:b=y=x+OA1B1为等腰直角三角形OB1=2设点A2坐标为(a,b)B1A2B2为等腰直角三角形A2C2=B1C2=ba=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=OB2=5同理设点A3坐标为(a,b)B2A3B3为等腰直角三角形A3C3=B2C3=ba=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是
24、故答案为:28(2018烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=:2解:连OA由已知,M为AF中点,则OMAF六边形ABCDEF为正六边形AOM=30设AM=aAB=AO=2a,OM=正六边形中心角为60MON=120扇形MON的弧长为: a则r1=a同理:扇形DEF的弧长为:则r2=r1:r2=故答案为:229(201
25、8潍坊)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;按此作法进行下去,则的长是解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交 直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2=4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(220
26、19,0),则的长是=故答案为:30(2018泰安)如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A处,若EA的延长线恰好过点C,则sinABE的值为解:由折叠知,AE=AE,AB=AB=6,BAE=90,BAC=90,在RtACB中,AC=8,设AE=x,则AE=x,DE=10x,CE=AC+AE=8+x,在RtCDE中,根据勾股定理得,(10x)2+36=(8+x)2,x=2,AE=2,在RtABE中,根据勾股定理得,BE=2,sinABE=,故答案为:31(2018济宁)如图,点A是反比例函数y=(x0)图象上一点,直线y=kx+b过点A并且与两坐标轴分
27、别交于点B,C,过点A作ADx轴,垂足为D,连接DC,若BOC的面积是4,则DOC的面积是22解:设A(a,)(a0),AD=,OD=a,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,C(0,b),B(,0),BOC的面积是4,SBOC=OBOC=b=4,b2=8k,k=ADx轴,OCAD,BOCBDA,a2k+ab=4,联立得,ab=44(舍)或ab=44,SDOC=ODOC=ab=22故答案为2232(2018潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30至正方形ABCD的位置,BC与CD相交于
28、点M,则点M的坐标为(1,)解:如图,连接AM,将边长为1的正方形ABCD绕点A逆时针旋转30得到正方形ABCD,AD=AB=1,BAB=30,BAD=60,在RtADM和RtABM中,RtADMRtABM(HL),DAM=BAM=BAD=30,DM=ADtanDAM=1=,点M的坐标为(1,),故答案为:(1,)33(2018威海)如图,直线AB与双曲线y=(k0)交于点A,B,点P是直线AB上一动点,且点P在第二象限连接PO并延长交双曲线于点C过点P作PDy轴,垂足为点D过点C作CEx轴,垂足为E若点A的坐标为(2,3),点B的坐标为(m,1),设POD的面积为S1,COE的面积为S2,当
29、S1S2时,点P的横坐标x的取值范围为6x2解:A(2,3)在y=上,k=6点B(m,1)在y=上,m=6,观察图象可知:当S1S2时,点P在线段AB上,点P的横坐标x的取值范围为6x2故答案为6x234(2018临沂)如图在ABC中,A=60,BC=5cm能够将ABC完全覆盖的最小圆形纸片的直径是cm解:设圆的圆心为点O,能够将ABC完全覆盖的最小圆是ABC的外接圆,在ABC中,A=60,BC=5cm,BOC=120,作ODBC于点D,则ODB=90,BOD=60,BD=,OBD=30,OB=,得OB=,2OB=,即ABC外接圆的直径是cm,故答案为:35(2018威海)如图,在扇形CAB中,CDAB,垂足为D,E是ACD的内切圆,连接AE,BE,则AEB的度数为135解:如图,连接ECE是ADC的内心,AEC=90+ADC=135,在AEC和AEB中,EACEAB,AEB=AEC=135,故答案为135专心-专注-专业