《八年级数学上册14.2勾股定理的应用(2)教案(华东师大版).docx》由会员分享,可在线阅读,更多相关《八年级数学上册14.2勾股定理的应用(2)教案(华东师大版).docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学上册14.2勾股定理的应用(2)教案(华东师大版)八年级数学上册勾股定理的应用教案 八年级数学上册勾股定理的应用教案 教学目标详细要求: 1.学问与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。 2.过程与方法目标:经验勾股定理的应用过程,娴熟驾驭其应用方法,明确应用的条件。 3.情感看法与价值观目标:通过自主学习的发展体验获得数学学问的感受;通过有关勾股定理的历史讲解,对学生进行德育教化。 重点:勾股定理的应用 难点:勾股定理的应用 教案设计 一、学问点讲解 学问点1:(已知两边求第三边) 1在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_。 2已知直角
2、三角形的两边长为3、4,则另一条边长是_。 3三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC的长? 学问点2: 利用方程求线段长 1、如图,马路上A,B两点相距25km,C,D为两村庄,DAAB于A,CBAB于B,已知DA=15km,CB=10km,现在要在马路AB上建一车站E, (1)使得C,D两村到E站的距离相等,E站建在离A站多少km处? (2)DE与CE的位置关系 (3)使得C,D两村到E站的距离最短,E站建在离A站多少km处? 利用方程解决翻折问题 2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm当折叠时,顶点D落在BC边
3、上的点F处(折痕为AE)想一想,此时EC有多长? 3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。 4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF的长是多少? 5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求点F和点E坐标。 6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形A
4、DC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式. 学问点3:推断一个三角形是否为直角三角形间接给出三边的长度或比例关系 1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是_。 (2)将直角三角形的三边扩大相同的倍数后,得到的三角形是_。 (3)在ABC中,a:b:c=1:1:,那么ABC的准确形态是_。 2.如图,正方形ABCD中,边长为4,F为DC的中点,E为BC上一点,CE=BC,你能说明AFE是直角吗? 变式:如图,正方形ABCD中,F为DC的中点,E为BC上一点,且CE=BC,你能说明AFE是直角吗? 3.一位同学向西南走40米后
5、,又走了50米,再走30米回到原地。问这位同学又走了50米后向哪个方向走了? 二、课堂小结 谈一谈你这节课都有哪些收获? 应用勾股定理解决实际问题 三、课堂练习以上习题。 四、课后作业卷子。 八年级数学上册勾股定理的应用教学设计 八年级数学上册勾股定理的应用教学设计 一、教学任务分析 勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步相识和理解直角三角形的须要,也是后续有关几何度量运算和代数学习的必定基础。2022版数学课程标准对勾股定理教学内容的要求是: 1、在探讨图形性质和运动等过程中,进一步发展空间观念; 2、在多种形式的数学
6、活动中,发展合情推理实力; 3、经验从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性; 4、探究勾股定理及其逆定理,并能运用它们解决一些简洁的实际问题。 本节勾股定理的应用是北师大版八年级数学上册第一章勾股定理第节详细内容是运用勾股定理及其逆定理解决简洁的实际问题在这些详细问题的解决过程中,须要经验几何图形的抽象过程,须要借助视察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题实力和应用意识;有些探究活动具有肯定的难度,须要学生相互间的合作沟通,有助于发展学生合作沟通的实力 本节课的教学目标是: 1能正确运用勾股定理及其逆定理解决简洁的实际问题。 2.经验实际问题抽
7、象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的实力并体会数学建模的思想 教学重点和难点: 应用勾股定理及其逆定理解决实际问题是重点。 把实际问题化归成数学模型是难点。 二教学设想 依据新课标提出的“要从学生已有的生活阅历动身,让学生亲身经验将实际问题抽象成数学模型并进行说明和运用的同时,在思维实力情感看法和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充溢趣味性和吸引力,让他们在自主探究,合作沟通中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采纳一题多变的形式拓宽学生视野,训练学生思维的敏捷性
8、,渗透化归的思想以及分类探讨思想,方程思想等,使学生在获得学问的同时提高实力。 在教学设计中,尽量考虑到不同学习水平的学生,留意学问由易到难的层次性,在课堂上,要照看到接受较慢的学生。使不同学生有不同的收获和发展。 三、教学过程分析 本节课设计了七个环勾股定理的应用教学设计节第一环节:情境引入;其次环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:沟通小结;第七环节:布置作业 第一环节:情境引入 情景1:复习提问:勾股定理的语言表述以及几何语言表达? 设计意图:温习旧学问,规范语言及数学表达,体现 数学的严谨性和规范性。勾股定理的应用教学设计 情景2:脑筋急转弯
9、一个三角形的两条边是3和4,第三边是多少? 设计意图:既敏捷考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。 其次环节:合作探究(圆柱体表面路程最短问题) 情景3:课本引例(蚂蚁怎样走最近) 设计意图:从好玩的生活场景引入,学生探究热忱高涨,通过实际动手操作,结合问题逆向思索,或是回想两点之间线段最短,通过合作沟通将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培育学生与人合作沟通的实力,增加学生探究实力,操作实力,分析实力,发展空间观念 第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题) 设计意图:将问题的条件稍做变更,让
10、学生尝试独立解决,拓展学生视野,又加深他们对学问的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的阅历,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类探讨思想。 第四环节:议一议 内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,勾股定理的应用教学设计 (1)你能替他想方法完成任务吗? (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么? (3)小明随身只有一个长度为20厘米的刻度尺,他能有方法检验AD边是否垂直于AB边吗?BC边与AB边呢? 设计
11、意图: 运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具敏捷处理问题 第五环节:方程与勾股定理 在我国古代数学著作九章算术中记载了一道好玩的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中心有勾股定理的应用教学设计一根新生的芦苇,它高出水面1尺,假如把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少尺?勾股定理的应用教学设计 意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪慧才智;学会运用方程的思想借助勾股定理解决实际问题。 第六环节
12、:沟通小结 内容:师生相互沟通总结: 1解决实际问题的方法是建立数学模型求解 2在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题 3在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。 意图:激励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史勾股定理的应用教学设计 第七环作业设计: 第一道题难度较小,大部分学生可以独立完成,其次道题有较大难度,可以沟通探讨完成。 八年级数学上册15.1.2数据的收集教案(华东师大版)15.1.2数据的收集教学目标:通过组织学生探讨解决实际问题,帮助学生经验收集数据的过程
13、,概括数据收集的步骤,理解频数与频率.教学重点:数据收集的步骤、频数与频率.教学难点:数据收集的意义、频数与频率的意义.教学过程:1.数据有用吗?赢在哪里?喜爱看球赛吗?有没有留意过解说员是怎样点评一场球赛的?解说员经常在竞赛间隙对双方的表现评价一番,比如领先的队为什么能取得优势,落后的队输在哪里,教练是否应当改换竞赛策略,等等.通常,在竞赛起先之前,解说员都会事先打算一些双方球队的数据资料,比如,每个队员的身高、体重、年龄以及球队以往的战绩等等,另外,还会打算一份用于记录本场竞赛攻守状况的统计表格.下面是20222022年赛季CBA总决赛第一场竞赛后公布的竞赛统计表.新疆广东最终得分1188
14、5二分球30472237二分球命中率6459三分球1124832三分球命中率4625罚篮25291726罚篮命中率8665进攻篮板1420防守篮板1615快攻3344扣篮23盖帽33助攻178失误1822从整场竞赛来看,新疆队最终能以118比85的比分战胜对方,靠的是高于对方的投篮命中率、较少失误以及中锋和后卫的精彩发挥,新疆队中锋盖帽的次数和对篮板球的限制,后卫助攻的次数和3分球命中率都赛过对方.我们班举荐谁当学生会委员的候选人?最喜爱哪一项体育活动?那个新教学楼的方案最好?班里有同月同日生的同学吗?请从上述问题当中选择一个,对班级里每一位同学做一次小调查,记录下调查中收集到的数据.2.数据
15、的收集从所做的调查中我们能感受到,要解决以上问题离不开调查中得到的数据.数据有助于我们作出民主的决策,也有助于我们发觉一些好玩的现象或者事实.假如我们对豌豆荚里通常会有几粒豆子问题有爱好,让我们回顾一下这个通过民意调查收集数据的过程.第一步:明确调查问题完整的豌豆荚里通常会有几粒豆子.其次步:确定调查对象肯定数量的豌豆荚.第三步:选择调查方法打开每个豌豆荚,数清其中的豆子粒数,约定怎样成熟度的豆子才计数,如直径大于3毫米;第四步:绽开调查数出每个豌豆荚中豆子的粒数第五步:记录结果一位同学数数,一位同学记录,一位同学监督;第六步:得出结论在我们调查的豌豆荚中,包含几粒豆子的请大家最多,大部分豌豆
16、荚里有几粒豆子,这些豌豆荚最少以及最多的有几粒豆子,等等豆子粒数0123456记录一正一正正一正正正正一正正0出现次数1611516100依据统计我们得到,包含6粒的豌豆荚最多,包含5粒的也许多,大部分豌豆荚中有2-7粒豆子,最多的有9粒豆子,最少的则一粒豆子都没有在记录数据时,我们发觉有的对象出现的次数许多,很频繁,而有的对象则相对较少,不太频繁.今后,我们用频数(frequency)这个词来表示每个对象出现的次数,用频率(relativefrequency)这个词来表示每个对象出现的次数与总次数的比值(或者百分比).频数和频率都能够反映每个对象出现的频繁程度.你能计算出豆子粒数为5的频数和
17、频率各是多少吗?试一试请拿出一枚骰子,随意抛向空中。骰子落定以后只有6种可能的结果出现。请你猜一猜,它会出现点数的状况?为什么?(1)请每个同学做10次“抛骰子”的嬉戏,把结果填入下表:抛掷结果甲10次乙10次甲乙合计20次全班合计400次频数频率频数频率频数频率出现1点0066出现2点3062出现3点0277出现4点2174出现5点3560出现6点2261(2)由组长汇总小组每个组员的数据;(3)汇总各小组的数据;细致视察你们记录下的数据,看能发觉哪些规律?思索频数和频率都能反映对象出现的频繁程度,你能说明这两个指标在运用上有什么不同吗?3.课堂小结本节课我们学习了什么?4.布置作业习题第11页 共11页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页