2022年指数函数对数函数专项练习 .pdf

上传人:Q****o 文档编号:60239188 上传时间:2022-11-15 格式:PDF 页数:6 大小:111.68KB
返回 下载 相关 举报
2022年指数函数对数函数专项练习 .pdf_第1页
第1页 / 共6页
2022年指数函数对数函数专项练习 .pdf_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2022年指数函数对数函数专项练习 .pdf》由会员分享,可在线阅读,更多相关《2022年指数函数对数函数专项练习 .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、指数函数、对数函数专项训练一、选择题1若函数y(a25a5)ax是指数函数,则有()Aa1 或a4 B a1Ca4 D a0,且a1解析:函数y(a25a5)ax是指数函数的条件为a25a51,a0,且a1,解得a4,故选 C.2.已知集合M=-1,1,N=x|212x+14,xZ,则 M N等于()A.-1,1B.-1C.0D.-1,0答案B 3.若 x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.abc B.cab C.bac D.bca答案C:1lnx 0,取 lnx=-0.5即可。4下列函数中值域为正实数的是()Ay 5xBy(13)1xC y12x1D y1 2x

2、解析:1xR,y(13)x的值域是正实数,y(13)1x的值域是正实数答案:B 5给出下列结论:当a1,nN*,n为偶数);函数f(x)(x2)12(3x7)0的定义域是 x|x2且x73;若 2x16,3y127,则xy7;其中正确的是()A B C D解析:a0,a30,a1),满足f(1)19,则f(x)的单调递减区间是()A(,2 B 2,)C 2,)D (,2 解析:由f(1)19得a219,a13(a13舍去),即f(x)13|2 x4|.由于y|2x4|在(,2)上递减,在(2,)上递增,所以f(x)在(,2)上递增,在(2,)上递减故选B.8若点,a b在lgyx图象 上,1a

3、,则下列点也在此图象上的是()(A)1,ba(B)10,1ab(C)10,1ba(D))2,(2ba【讲析】选 D.由题 意2lglg22,lgaabab,即)2,(2ba也在函数xylg图象上.9.设函数 f(x)=12211log1x,x,x,x,则满足 f(x)2 的 x 的取值范围是()(A)-1,2 (B)0,2 (C)1,+)(D)0,+)【思路】可分1x和1x两种情况分别求解,再把结果并起来【讲析】若1x,则x-122,解得10 x;若1x,则2xlog-12,解得1x,综上,0 x.故选 D.10、如果1122loglog0 xy,那么()()1A yx()1B xy()1Cx

4、y()1Dyx【讲析】选 D.因为12logyx为(0,)上的减函数,所以1xy.11已知244log 3.6,log 3.2,log 3.6abc=则()A.abcBacbC.bac D.cab【思路】先与 1 比较,再看真数或底数,b 与 c 的底数相同,分别比较.文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R

5、5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编

6、码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C

7、10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4

8、R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1

9、L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6

10、C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6

11、V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1【讲析】选 B.因为24log 3.6 1log 3.6 1ac=,0=。12、函数yln(1 x)的图象大致为()解析:依题意由ylnx的图象关于y轴对称可得到yln(x)的图象,再将其图象向右平移1 个单位即可得到yln(1 x)的图象,变换过程如图答案:C 13已知函数()()()f xxaxb(其中ab)的图象如下面右图所示,则函数()xg xab的图象是()ABCD 解析 A;由()()()f xxa xb的图象知1,1 bao,所以函数()xg xab的图象是A 二、填空题14函数

12、ylog0.5(4x23x)的定义域是 _解析:由题知,log0.5(4x23x)0log0.51,所以4x23x0,4x23x 1.从而可得函数的定义域为14,0 34,1.答案:14,0 34,115当x 2,0 时,函数y3x+12 的值域是 _解析:x 2,0 时y3x 12 为增函数,3212y30 12,即53y1。答案:53,1 16函数ylog12(2x23x1)的递减区间为。解析:由2x23x10,得x1 或x12,易知u2x23x1x1或x12在(1,)上是增函数,而ylog12(2x23x 1)的底数121,且120,所以该函数的递减区间为(1,)17若函数f(x)log

13、ax(0a1)在区间 a,2a 上的最大值是最小值的3 倍,则a_.文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z

14、4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN

15、1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X

16、6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV

17、6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10

18、R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档

19、编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1解析:0a1,logaa3loga2a,2aa13,得a24.答案:2418已知函数f(x)3x1,

20、x0log2x,x0,则使函数f(x)的图象位于直线y 1 上方的x的取值范围是_解析:当x0时,3x1 1?x10,1x0;当x 0 时,log2x1?x2,x2.综上所述,x的取值范围为1x 0 或x2.答案:x|10.,0)31(231ga即.0)31()31(3222aaa解得 2-23a2.故 a 的取值范围是 a|2-23a0 得-1x4 令tx23x4(x32)2254.0t254.yg(t)lgt,00 且a1,函数f(x)logax,x2,4的值域为 m,m1,求a的值解:当a1 时,f(x)logax在2,4上是增函数,x2 时,f(x)取最小值;x4时,f(x)取最大值,

21、即loga2mloga4m1?2loga2loga2 1?loga21,a2,当 0a1 时,f(x)logax在2,4上是减函数,当x2 时,f(x)取最大值;当x4 时,f(x)取最小值,即loga2m1loga4m?loga22loga2 1?loga2 1.a12.综上所述,a2 或a12.23已知函数f(x)2x12|x|.(1)若 f(x)2,求 x 的值;(2)若 2tf(2t)mf(t)0 对于 t1,2恒成立,求实数m 的取值范围解:(1)当 x0 时,f(x)0;当 x0 时,f(x)2x12x.由条件可知2x12x2,即 22x2 2x10,解得 2x 1 2.2x 0,

22、xlog2(12)(2)当 t 1,2时,文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6

23、C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6

24、V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R

25、5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编

26、码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C

27、10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4

28、R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F12t(22t122t)m(2t12t)0,即 m(22t1)(24t1)22t10,m(22t1)t 1,2,(122t)17

29、,5,故 m 的取值范围是5,)24.已知定义域为R的函数 f(x)为奇函数,且满足f(x+2)=-f(x),当 x 0,1时,f(x)=2x-1.(1)求 f(x)在-1,0)上的解析式;(2)求 f(log2124).解 (1)令 x-1,0),则-x(0,1,f(-x)=()21x-1.又 f(x)是奇函数,f(x)=f(x),f(x)=f(x)=()21x 1,f(x)=()21x+1.(2)f(x+2)=f(x),f(x+4)=f(x+2)=f(x),log2124=log224(5,4),log2124+4(1,0),f(log2124)=f(log2124+4)=()21424l

30、og21+1=24161+1=21.25.已知函数f(x)loga2x2x(0a1)(1)试判断 f(x)的奇偶性;(2)解不等式f(x)loga3x.解:(1)2x2x0?2x2.故 f(x)的定义域关于原点对称,且 f(x)loga2x2x loga(2x2x)1 f(x),f(x)是奇函数(2)f(x)loga3x?loga2x2xloga3x.0a1,故2x2x0,2x2x3x?2 x2,3x2 x1x 20?23 x1.即原不等式的解集为x|23x1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X

31、6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV

32、6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10

33、R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档

34、编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8

35、C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z

36、4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1文档编码:CY8C10E8Z4R3 HN1L5A8X6C7 ZV6V8I10R5F1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁