2022年反比例函数知识点归纳总结与典型例题2 .pdf

上传人:Q****o 文档编号:60233203 上传时间:2022-11-15 格式:PDF 页数:5 大小:205.49KB
返回 下载 相关 举报
2022年反比例函数知识点归纳总结与典型例题2 .pdf_第1页
第1页 / 共5页
2022年反比例函数知识点归纳总结与典型例题2 .pdf_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《2022年反比例函数知识点归纳总结与典型例题2 .pdf》由会员分享,可在线阅读,更多相关《2022年反比例函数知识点归纳总结与典型例题2 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如 y=xk(k是常数,k=0)的函数叫做反比例函数。注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A)y=xk(k 0),(B)xy=k(k 0)(C)y=kx-1(k0)例题讲解:有关反比例函数的解析式(1)下列函数,1)2(yx.11xy21xy.xy212xy13yx;其中是y关于 x 的反比例函数的有:_。(2)函数22)2(axay是反比例函数,则a的值是()A 1 B 2 C2 D2 或 2(3)若函数11mxy(m是常数)是反比例函数,则m_,解析式为 _

2、(4)反比例函数(0kykx)的图象经过(2,5)和(2,n),求 1)n的值;2)判断点B(24,2)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。2、位置:(1)当 k0 时,双曲线分别位于第_象限内;(2)当 k0 时,_,y随 x 的增大而 _;(2)当 k0 时,_,y随 x 的增大而 _。4、变化趋势:双曲线无限接近于x、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点_;(2)对于 k 取互为相反数的两个反比例函数(如:y=x6和 y=x6)来说,它们是关于x 轴,y 轴 _。例题

3、讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限(2)若反比例函数22)12(mxmy的图象在第二、四象限,则m的值是()A、1 或 1;B、小于12的任意实数;C、1;、不能确定(3)下列函数中,当0 x时,y随x的增大而增大的是()A34yxB123yxC4yxD12yx(4)已知反比例函数2yx的图象上有两点A(1x,1y),B(2x,2y),且12xx,则12yy的值是()A正数B负数C非正数D不能确定(5)若点(1x,1y)、(2x,2y)和(3x,3y)分别在反比例函数2yx的图象上,且1230 xxx,则下列判断中正确的是()A123yyyB31

4、2yyyC231yyyD321yyy(6)在反比例函数xky1的图象上有两点11()xy,和22()xy,若xx120时,yy12,则k的取值范围是(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随 x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:.(三)反比例函数与面积结合题型。知识要点:1、反比例函数与矩形面积:若P(x,y)为反比例函数xky(k0)图像上的任意一点如图1 所示,过P作PMx轴于M,作PNy轴于N,求矩形PMON的面积.分析:S矩形PMON=xyxyPNP

5、Mxky,xy=k,S=k.2、反比例函数与矩形面积:若Q(x,y)为反比例函数xky(k0)图像上的任意一点如图2 所示,过Q作QAx轴于A(或作QBy轴于B),连结QO,则所得三角形的面积为:SQOA=2k(或SQOB=2k).说明:以上结论与点在反比例函数图像上的位置无关.(1)如图 3,在反比例函数xy6(x 0)的图象上任取一点P,过P点分别作x轴、y轴的垂线,垂足分别为M、N,那么四边形PMON的面积为P y x O M N 图 1 O B y x A Q 图P y M x 0 N 3 文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ

6、10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL

7、3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2

8、G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:

9、CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6

10、HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 Z

11、N2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编

12、码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4M y N x O 图 4(2)反比例函数xky的图象如图4 所示,点M是该函数图象上一点,MNx轴,垂足为N.如果SMON=2,这个反比例函数的解析式为_(3)如图 5,正比例函数(0)ykx k与反比例函数2yx的图象相交于A、C两点,过点 A作 AB x轴于点 B,连结 BC 则 ABC的面积等于()A1 B2 C 4 D随k的取值改变而改变(4)如图

13、 6,A、B是函数2yx的图象上关于原点对称的任意两点,BCx轴,ACy轴,ABC的面积记为S,则()A2S B 4SC24SD4S(5)如图7,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数xyxy24和的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则ABC的面积为()(四)一次函数与反比例函数(1)一次函数y=2x+1 和反比例函数y=的大致图象是()A B C D(2)一次函数)0(kkkxy和反比例函数)0(kxky在同一直角坐标系中的图象大致是()yxO A C B 图 6 图 5 图 7 文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN

14、2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码

15、:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6

16、 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5

17、ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档

18、编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6

19、L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L

20、5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4(3)一次函数y1=k1x+b 和反比例函数y2=(k1?k20)的图象如图所示,若y1 y2,则 x 的取值范围是()A、2x0 或 x1 B、2x1C、x 2 或 x1 D、x 2 或 0 x1(4)正比例函数2xy和反比例函数2yx的图象有个交点(5)正比例函数y=k1x(k1 0)和反比例函数y=2kx(k20)的一个

21、交点为(m,n),则另一个交点为_.(6)设函数y=2x与y=x1 的图象的交点坐标为(a,B),则11ab的值为(7)如图,RtABO的顶点 A是双曲线kyx与直线yxm?在第二象限的交点,AB垂直x轴于 B,且 SABO32,则反比例函数的解析式(8)若反比例函数xky与一次函数y3xb都经过点(1,4),则kb_(9)如图,已知A(4,a),B(2,4)是一次函数ykxb的图象和反比例函数yxm的图象的交点(1)求反比例函数和一次函数的解祈式;(2)求A0B的面积(10)如图,在平面直角坐标系中,直线2kyx与双曲线kyx在第一象限交于点A,与x轴交于点C,AB x轴,垂足为B,且AOB

22、S1求:(1)求两个函数解析式;(2)求 ABC的面积(第(7)题)2kx文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6

23、 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5

24、ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档

25、编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6

26、L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L

27、5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4

28、文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4(11)平面直角坐标系中,直线AB交 x 轴于点 A,交 y 轴于点 B 且与反比例函数图象分别交于C、D两点,过点 C作 CM x轴于 M,AO=6,BO=3,CM=5 求直线 AB的解析

29、式和反比例函数解析式文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编

30、码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L

31、6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5

32、 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文

33、档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E

34、6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4文档编码:CJ10Q8F8E6L6 HL3Y5B1D2L5 ZN2G1H7B3D4

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁