《2017年高考数学总复习精品课件(苏教版):第四单元第一节 导数的概念及运算.ppt》由会员分享,可在线阅读,更多相关《2017年高考数学总复习精品课件(苏教版):第四单元第一节 导数的概念及运算.ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一节 导数的概念及运算,基础梳理,数量化,视觉化,1. 函数f(x)在区间x1,x2上的平均变化率(1)函数f(x)在区间x1,x2上的平均变化率为 ,(2)平均变化率是曲线陡峭程度的“ ”,或者说,曲线陡峭程度是平均变化率的“ ”. 2. 函数f(x)在x=x0处的导数(1)定义设函数y=f(x)在区间(a,b)上有定义, 若x无限趋近于0时,比值 无限趋近于一个常数A,则称f(x)在x=x0处可导,并称该常数A为函数f(x)在x=x0处的导数,记作 .,(2)几何意义函数f(x)在点x0处的导数f(x0)的几何意义是在曲线y=f(x)上点 . 处的 .相应地,切线方程为 .,3. 函数f
2、(x)的导函数若f(x)对于区间(a,b)内任一点都可导,则f(x)在各点的导数也随着自变量x的 而 ,因而也是自变量x的函数,该函数称为f(x)的导函数,记作 .,切线的斜率,变化,变化,f(x).,4. 基本初等函数的导数公式,f(x)= .,f(x)= .,k,0,1,2x,cos x,sinx,5. 导数运算法则(1)f(x)g(x)= ; (2)Cf(x)= (C为常数);(3)f(x)g(x)= ;,f(x)g(x),Cf(x),f(x)g(x)+f(x)g(x),典例分析,题型一 利用导数的定义求导数【例1】用导数定义求y=x2在x=1处的导数值.分析 利用导数的定义,按求导数的
3、步骤求解.解当x无限趋近于0时, 趋近于2,y|x=1=2.学后反思 利用导数的定义求在一点x0的导数的关键是对yx进行灵活变形,若求f(x)在开区间(a,b)内的导数,只需将x0看成是(a,b)内的任意点x,即可求得f(x).,举一反三1. 已知 ,利用定义求y,y|x=1.,题型二 利用求导公式求导数【例2】求下列函数的导数.,解析,分析 直接利用导数公式及四则运算法则进行计算.,学后反思 准确记忆求导公式及四则运算法则是解答本题的关键.,解 (1)y=( )sin x+ (sin x)=2xsin x+x2cos x. (2),举一反三2. 求函数 的导数.,题型三 导数的物理意义及在物
4、理上的应用【例3】一质点运动的方程为s=8-3t2.(1)求质点在1,1+t这段时间内的平均速度;(2)求质点在t=1的瞬时速度.,解析,分析 第(1)问可利用公式 求解;第(2)问可利用第(1)问的结论求解,也可利用求导公式及四则运算法则求解.,解 (1)质点在1,1+t这段时间内的平均速度为(2)方法一(定义法):质点在t=1时的瞬时速度v=,方法二(求导法):质点在t时刻的瞬时速度v=s(t)=-6t,当t=1时,v=-6.,学后反思 导数的概念是通过函数的平均变化率、瞬时变化率、物体运动的瞬时速度、曲线的切线等实际背景引入的,所以在了解导数概念的基础上也应了解这些实际背景的意义.对于作
5、变速运动的物体来说,其位移对时间的函数的导数就是其运动的速度对时间的函数,速度对时间的函数的导数就是其运动的加速度对时间的函数,这是导数的物理意义,利用导数的物理意义可以解决一些相关的物理问题,举一反三3. 以初速度 作竖直上抛运动的物体,t秒时的高度为 ,求物体在时刻 时的瞬时速度.,解析:物体在 时刻的瞬时速度为 .,题型四 导数的几何意义及在几何上的应用【例4】(14分)已知曲线(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程.,分析 (1)点P处的切线以点P为切点,关键是求出切线斜率k=f(2).(2)过点P的切线,点P不一定是切点,需要设出切点坐标.,
6、解 (1)y=x2,2在点P(2,4)处的切线的斜率k=y|x=2=4,3曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.4,(2)设曲线 与过点P(2,4)的切线相切于点 ,则切线的斜率k=y|x=x0=x20.6,切线方程为即点P(2,4)在切线上,即x30-3x20+4=0,x30+x20-4x20+4=0,x20(x0+1)-4(x0+1)(x0-1)=0,(x0+1)(x0-2)2=0,解得x0=-1或x0=2,.12故所求的切线方程为4x-y-4=0或x-y+2=0.14,学后反思 (1)解决此类问题一定要分清是“在某点处的切线”,还是“过某点的切线”.
7、(2)解决“过某点的切线”问题,一般是设出切点坐标(x0,y0),得出切线方程y-y0=f(x0)(x-x0),然后把已知点代入切线方程求(x0,y0),进而求出切线方程.,举一反三4. 求曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离.,解析: 设曲线上过点 的切线平行于直线2x-y+3=0,即斜率是2,则.解得 ,即点P(1,0),点P到直线2x-y+3=0的距离为 ,曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是 .,题型五 复合函数的导数【例5】求下列函数的导数.,分析 先确定中间变量转化为常见函数,再根据复合函数的求导法则求导.也可直接用复合函数求导
8、法则运算.,解,学后反思 求复合函数的导数,关键是理解复合过程,选定中间变量,弄清是谁对谁求导,其一般步骤是:(1)分清复合关系,适当选定中间变量,正确分解复合关系(简称分解复合关系);(2)分层求导,弄清每一步中哪个变量对哪个变量求导数(简称分层求导).即:分解(复合关系)求导(导数相乘),举一反三5.求下列函数的导数。,解析:,易错警示,【例】已知曲线 上的点P(0,0),求过点P(0,0)的切线方程.错解 在点x=0处不可导,因此过P点的切线不存在.错解分析 本题的解法忽视了曲线在某点处的切线的定义.在点P处的切线是指曲线在点P附近取点Q,当点Q趋近于点P时,割线PQ的极限位置的直线就是
9、过点P的切线,因此过点P的切线存在,为y轴(如下图所示).,正解 如右图,按切线的定义,当x0时割线PQ的极限位置为y轴(此时斜率不存在),因此,过点P的切线方程为x=0.,考点演练,10. 已知函数 的图象都过点P(2,0),且在点P处有相同的切线.求实数a,b,c的值.,解析: f(x)过点(2,0), ,解得a=-8,同理,g(2)=4b+c=0.f(x)=6x2-8,在点P处切线斜率 .又g(x)=2bx,2b2=16,b=4,c=-4b=-16.综上,a=-8,b=4,c=-16.,11. 设函数f(x)满足 ,a,b,c为常数,|a|b|,求f(x),解析: 将 中的x换成 ,可得
10、将其代入已知条件中得 ,12. (2008宁夏)设函数 (a,bZ),曲线y=f(x)在点(2,f(2)处的切线方程为y=3.(1)求f(x)的解析式;(2)证明函数y=f(x)的图象是一个中心对称图形,并求其对称中心;(3)证明曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形面积为定值,并求出此定值.,解析: (1)f(x)= .于是 ,解得,(2)证明:已知函数 都是奇函数,函数 也是奇函数,其图象是以原点为中心的中心对称图形.由 可知f(x)的图象是由g(x)的图象沿x轴正方向向右平移1个单位,再沿y轴正方向向上平移1个单位得到的.故函数f(x)的图象是以点(1,1)为中心的中心对称图形.,(3)证明:在曲线上任取一点 ,由 知,过此点的切线方程为.令x=1,得 ,切线与直线x=1的交点为 .令y=x,得 ,切线与直线y=x的交点为 .直线x=1与y=x交点为(1,1).从而所围三角形面积为所以所围三角形的面积为定值2.,