《2.1.2 两条直线平行和垂直的判定 导学案-人教A版高中数学选择性必修第一册.docx》由会员分享,可在线阅读,更多相关《2.1.2 两条直线平行和垂直的判定 导学案-人教A版高中数学选择性必修第一册.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.1.2 两条直线平行和垂直的判定 1.理解两条直线平行与垂直的条件.2.能根据斜率判定两条直线平行或垂直.3.能利用两直线平行或垂直的条件解决问题.重点:理解两条直线平行或垂直的判断条件难点:会利用斜率判断两条直线平行或垂直一、自主导学(一)、两条直线平行与斜率之间的关系设两条不重合的直线l1,l2,倾斜角分别为1,2,斜率存在时斜率分别为k1,k2.则对应关系如下:前提条件1=2901=2=90对应关系l1l2k1=k2l1l2两直线斜率都不存在图示点睛:若没有指明l1,l2不重合,那么k1=k2l1l2,或l1与l2重合,用斜率证明三点共线时,常用到这一结论.(二)、两条直线垂直与斜率
2、之间的关系 对应关系l1与l2的斜率都存在,分别为k1,k2,则l1l2k1k2=-1l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是l1l2.图示点睛:“两条直线的斜率之积等于-1”是“这两条直线垂直”的充分不必要条件.因为两条直线垂直时,除了斜率之积等于-1,还有可能一条直线的斜率为0,另一条直线的斜率不存在.二、小试牛刀1.对于两条不重合的直线l1,l2,“l1l2”是“两条直线斜率相等”的什么条件?2.已知直线l1经过两点(-1,-2),(-1,4),直线l2经过两点(2,1),(x,6),且l1l2,则x=.3思考辨析(1)若两条直线的斜率相等,则这两条直线平行
3、()(2)若l1l2,则k1k2.()(3)若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直()(4)若两条直线的斜率都不存在且两直线不重合,则这两条直线平行()4.若直线l1,l2的斜率是方程x2-3x-1=0的两根,则l1与l2的位置关系是. 一、情境导学 过山车是一项富有刺激性的娱乐项目.实际上,过山车的运动包含了许多数学和物理学原理.过山车的两条铁轨是相互平行的轨道,它们靠着一根根巨大的柱形钢筋支撑着,为了使设备安全,柱子之间还有一些小的钢筋连接,这些钢筋有的互相平行,有的互相垂直,你能感受到过山车中的平行和垂直吗?两条直线的平行与垂直用什么来刻画呢? 二、典
4、例解析例1 判断下列各小题中的直线l1与l2是否平行:(1)l1经过点A(-1,-2),B(2,1),l2经过点M(3,4),N(-1,-1);(2)l1的斜率为1,l2经过点A(1,1),B(2,2);(3)l1经过点A(0,1),B(1,0),l2经过点M(-1,3),N(2,0);(4)l1经过点A(-3,2),B(-3,10),l2经过点M(5,-2),N(5,5).延伸探究 已知A(-2,m),B(m,4),M(m+2,3),N(1,1),若ABMN,则m的值为.判断两直线是否平行的步骤例2(1)直线l1经过点A(3,2),B(3,-1),直线l2经过点M(1,1),N(2,1),判
5、断l1与l2是否垂直;(2)已知直线l1经过点A(3,a),B(a-2,3),直线l2经过点C(2,3),D(-1,a-2),若l1l2,求a的值. 两直线垂直的判定方法 两条直线垂直需判定k1k2=-1,使用它的前提条件是两条直线斜率都存在,若其中一条直线斜率不存在,另一条直线斜率为零,此时两直线也垂直.跟踪训练1 已知定点A(-1,3),B(4,2),以AB为直径作圆,与x轴有交点P,则交点P的坐标是.例3 如图所示,在平面直角坐标系中,四边形OPQR的顶点坐标按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t0.试判断四边形OPQR的形状.延伸
6、探究1 将本例中的四个点,改为“A(-4,3),B(2,5),C(6,3),D(-3,0),顺次连接A,B,C,D四点,试判断四边形ABCD的形状.”延伸探究2 将本例改为“已知矩形OPQR中四个顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),试求顶点R的坐标.”利用两条直线平行或垂直来判断图形形状的步骤点睛:利用平行、垂直关系式的关键在于正确求解斜率,特别是含参数的问题,必须要分类讨论;其次要注意的是斜率不存在并不意味着问题无解金题典例 已知点A(0,3),B(-1,0),C(3,0),且四边形ABCD为直角梯形,求点D的坐标.反思感悟:先由图形判断四边形各边的关系
7、,再由斜率之间的关系完成求解.特别地,注意讨论所求问题的不同情况.1下列说法正确的是()A若直线l1与l2倾斜角相等,则l1l2B若直线l1l2,则k1k21C若直线的斜率不存在,则这条直线一定平行于y轴D若两条直线的斜率不相等,则两直线不平行2.若直线l1的斜率为a,l1l2,则直线l2的斜率为() A.1aB.aC.-1aD.-1a或不存在3.已知直线l1的倾斜角为45,直线l1l2,且l2过点A(-2,-1)和B(3,a),则a的值为.4.已知ABC的三个顶点分别是A(2,2),B(0,1),C(4,3),点D(m,1)在边BC的高所在的直线上, 则实数m=.5.顺次连接A(-4,3),
8、B(2,5),C(6,3),D(-3,0)四点,判断四边形ABCD形状.参考答案:知识梳理二、小试牛刀1.答案:必要不充分条件,如果两不重合直线斜率相等,则两直线一定平行;反过来,两直线平行,有可能两直线斜率均不存在.2.解析:由题意知l1x轴.又l1l2,所以l2x轴,故x=2.答案:23答案:(1)也可能重合(2)l1l2,其斜率不一定存在(3)不一定垂直,只有另一条直线斜率为0时才垂直(4)4.解析:由根与系数的关系,知k1k2=-1,所以l1l2.答案:l1l2学习过程例1 思路分析: 斜率存在的直线求出斜率,利用l1l2k1=k2进行判断,若两直线斜率都不存在,可通过观察并结合图形得
9、出结论.解:(1)k1=1-(-2)2-(-1)=1,k2=-1-4-1-3=54,k1k2,l1与l2不平行.(2)k1=1,k2=2-12-1=1,k1=k2,故l1l2或l1与l2重合.(3)k1=0-11-0=-1,k2=0-32-(-1)=-1,则有k1=k2.又kAM=3-1-1-0=-2-1,则A,B,M不共线.故l1l2.(4)由已知点的坐标,得l1与l2均与x轴垂直且不重合,故有l1l2.延伸探究 解析:当m=-2时,直线AB的斜率不存在,而直线MN的斜率存在,MN与AB不平行,不合题意;当m=-1时,直线MN的斜率不存在,而直线AB的斜率存在,MN与AB不平行,不合题意;当
10、m-2,且m-1时,kAB=4-mm-(-2)=4-mm+2,kMN=3-1m+2-1=2m+1.因为ABMN,所以kAB=kMN,即4-mm+2=2m+1,解得m=0或m=1.当m=0或1时,由图形知,两直线不重合.综上,m的值为0或1.答案:0或1 例2思路分析:(1)若斜率存在,求出斜率,利用垂直的条件判断;若一条直线的斜率不存在,再看另一条直线的斜率是否为0,若为0,则垂直.(2)当两直线的斜率都存在时,由斜率之积等于-1求解;若一条直线的斜率不存在,由另一条直线的斜率为0求解.解:(1)直线l1的斜率不存在,直线l2的斜率为0,所以l1l2.(2)由题意,知直线l2的斜率k2一定存在
11、,直线l1的斜率可能不存在.当直线l1的斜率不存在时,3=a-2,即a=5,此时k2=0,则l1l2,满足题意.当直线l1的斜率k1存在时,a5,由斜率公式,得k1=3-aa-2-3=3-aa-5,k2=a-2-3-1-2=a-5-3.由l1l2,知k1k2=-1,即3-aa-5a-5-3=-1,解得a=0.综上所述,a的值为0或5. 跟踪训练1 解析:设以AB为直径的圆与x轴的交点为P(x,0).kPB0,kPA0,kPAkPB=-1,即0-3x+10-2x-4=-1,(x+1)(x-4)=-6,即x2-3x+2=0,解得x=1或x=2.故点P的坐标为(1,0)或(2,0).答案:(1,0)
12、或(2,0)例3 思路分析:利用直线方程的系数关系,或两直线间的斜率关系,判断两直线的位置关系.解:由斜率公式得kOP=t-01-0=t,kRQ=2-(2+t)-2t-(1-2t)=-t-1=t,kOR=2-0-2t-0=-1t,kPQ=2+t-t1-2t-1=2-2t=-1t.所以kOP=kRQ,kOR=kPQ,从而OPRQ,ORPQ.所以四边形OPQR为平行四边形.又kOPkOR=-1,所以OPOR,故四边形OPQR为矩形.延伸探究1 由斜率公式可得kAB=5-32-(-4)=13,kCD=0-3-3-6=13,kAD=0-3-3-(-4)=-3,kBC=3-56-2=-12.所以kAB=
13、kCD,由图可知AB与CD不重合,所以ABCD,由kADkBC,所以AD与BC不平行.又因为kABkAD=13(-3)=-1,所以ABAD,故四边形ABCD为直角梯形.解:由题意A,B,C,D四点在平面直角坐标系内的位置如图,延伸探究2 解:因为OPQR为矩形,所以OQ的中点也是PR的中点.设R(x,y),则由中点坐标公式知0+1-2t2=1+x2,0+2+t2=t+y2,解得x=-2t,y=2.所以R点的坐标是(-2t,2).金题典例 思路分析:分析题意可知,AB、BC都不可作为直角梯形的直角边,所以要考虑CD是直角梯形的直角边和AD是直角梯形的直角边这两种情况;设所求点D的坐标为(x,y)
14、,若CD是直角梯形的直角边,则BCCD,ADCD,根据已知可得kBC=0,CD的斜率不存在,从而有x=3;接下来再根据kAD=kBC即可得到关于x、y的方程,结合x的值即可求出y,那么点D的坐标便不难确定了,同理再分析AD是直角梯形的直角边的情况.解:设所求点D的坐标为(x,y),如图所示,由于kAB=3,kBC=0,则kABkBC=0-1,即AB与BC不垂直,故AB、BC都不可作为直角梯形的直角边.若CD是直角梯形的直角边,则BCCD,ADCD,kBC=0,CD的斜率不存在,从而有x=3.又kAD=kBC,y-3x=0,即y=3.此时AB与CD不平行.故所求点D的坐标为(3,3).若AD是直
15、角梯形的直角边,则ADAB,ADCD,kAD=y-3x,kCD=yx-3.由于ADAB,则y-3x3=-1.又ABCD,yx-3=3.解上述两式可得x=185,y=95,此时AD与BC不平行.故所求点D的坐标为185,95.综上可知,使四边形ABCD为直角梯形的点D的坐标可以为(3,3)或185,95.达标检测1 解析:A中,l1与l2可能重合;B中,l1,l2可能存在其一没斜率;C中,直线也可能与y轴重合;D正确,选D.答案 D2. 解析:若a0,则l2的斜率为-1a;若a=0,则l2的斜率不存在.答案:D 3.解析:由题意,得a-(-1)3-(-2)=1,即a=4.答案:4 4.解析:设直线AD,BC的斜率分别为kAD,kBC,由题意,得ADBC,则有kADkBC=-1,所以有1-2m-23-14-0=-1,解得m=52.答案:525.解:kAB=13,kBC=-12,kCD=13,kAD=-3, 所以直线AD垂直于直线AB与CD,而且直线BC不平行于任何一条直线,所以四边形ABCD是直角梯形.