《2023年微积分笔记.doc》由会员分享,可在线阅读,更多相关《2023年微积分笔记.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章 函数、极限和连续1.1 函数一、 重要内容 函数的概念 1. 函数的定义: y=f(x), xD 定义域: D(f), 值域: Z(f).2.分段函数: 3.隐函数: F(x,y)= 04.反函数: y=f(x) x=(y)=f-1(y) y=f-1 (x)定理:假如函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增长(或减少)的;则它必然存在反函数:y=f-1(x), D(f-1)=Y, Z(f-1)=X 也是严格单调增长(或减少)的。 函数的几何特性1.函数的单调性: y=f(x),xD,x1、x2D 当x1x2时, 若f(x1)f(x2),则称f(x)在D内单调增
2、长( );若f(x1)f(x2),则称f(x)在D内单调减少( );若f(x1)f(x2),则称f(x)在D内严格单调增长( );若f(x1)f(x2),则称f(x)在D内严格单调减少( )。2.函数的奇偶性:D(f)关于原点对称 奇函数:f(-x)=-f(x) 偶函数:f(-x)=f(x)3.函数的周期性: 周期函数:f(x+T)=f(x), x(-,+) 周期:T最小的正数4.函数的有界性: |f(x)|M , x(a,b) 基本初等函数1.常数函数: y=c , (c为常数)2.幂函数: y=xn , (n为实数)3.指数函数: y=ax , (a0、a1)4.对数函数: y=loga
3、x ,(a0、a1)5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x 复合函数和初等函数1.复合函数: y=f(u) , u=(x)y=f(x) , xX2.初等函数:由基本初等函数通过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表达的函数1.2 极 限一、 重要内容极限的概念1. 数列的极限: 称数列以常数A为极限;或称数列收敛于A.定理: 若的极限存在必然有界.2.函数的极限: 当时,
4、的极限: 当时,的极限: 左极限: 右极限:函数极限存的充要条件:定理:无穷大量和无穷小量1 无穷大量: 称在该变化过程中为无穷大量。 X再某个变化过程是指: 2 无穷小量:称在该变化过程中为无穷小量。3 无穷大量与无穷小量的关系: 定理:4 无穷小量的比较: 若,则称是比较高阶的无穷小量; 若 (c为常数),则称与同阶的无穷小量; 若,则称与是等价的无穷小量,记作:; 若,则称是比较低阶的无穷小量。定理:若: 则:两面夹定理1 数列极限存在的鉴定准则: 设: (n=1、2、3) 且: 则: 2 函数极限存在的鉴定准则: 设:对于点x0的某个邻域内的一切点(点x0除外)有: 且: 则:极限的运
5、算规则 若: 则: 推论: 两个重要极限 1 或 2 1.3 连续一、 重要内容 函数的连续性1. 函数在处连续:在的邻域内有定义, 1o 2o 左连续: 右连续:2. 函数在处连续的必要条件: 定理:在处连续在处极限存在3. 函数在处连续的充要条件: 定理:4. 函数在上连续: 在上每一点都连续。 在端点和连续是指: 左端点右连续; 右端点左连续。 a+ 0 b- x5. 函数的间断点:若在处不连续,则为的间断点。间断点有三种情况: 1o在处无定义; 2o不存在; 3o在处有定义,且存在, 但。 两类间断点的判断: 1o第一类间断点:特点:和都存在。可去间断点:存在,但,或在处无定义。 2o
6、第二类间断点:特点:和至少有一个为, 或振荡不存在。无穷间断点:和至少有一个为函数在处连续的性质1. 连续函数的四则运算: 设, 1o 2o 3o 2. 复合函数的连续性: 则:3. 反函数的连续性: 函数在上连续的性质 1.最大值与最小值定理:在上连续在上一定存在最大值与最小值。 y y +M M f(x) f(x) 0 a b x m -M 0 a b x2.有界定理:在上连续在上一定有界。 3.介值定理: 在上连续在内至少存在一点,使得:, 其中: y y M f(x) C f(x) 0 a b x m 0 a 1 2 b x 推论: 在上连续,且与异号 在内至少存在一点,使得:。 4.
7、初等函数的连续性: 初等函数在其定域区间内都是连续的。第二章 一元函数微分学2.1 导数与微分一、重要内容导数的概念 1导数:在的某个邻域内有定义, 2左导数:右导数: 定理:在的左(或右)邻域上连续在其内可导,且极限存在; 则:(或:)3.函数可导的必要条件: 定理:在处可导在处连续 4. 函数可导的充要条件: 定理:存在,且存在。 5.导函数: 在内处处可导。 y 6.导数的几何性质: 是曲线上点 处切线的斜率。 o x0 x求导法则 1.基本求导公式: 2.导数的四则运算: 1o 2o 3o 3.复合函数的导数: ,或 注意与的区别: 表达复合函数对自变量求导; 表达复合函数对中间变量求
8、导。4.高阶导数: 函数的n阶导数等于其n-1导数的导数。微分的概念 1.微分:在的某个邻域内有定义, 其中:与无关,是比较高阶的无穷小量,即: 则称在处可微,记作: 2.导数与微分的等价关系: 定理:在处可微在处可导,且: 3.微分形式不变性: 不管u是自变量,还是中间变量,函数的微分都具有相同的形式。2.2 中值定理及导数的应用一、重要内容中值定理 1.罗尔定理: 满足条件: y a o b x a o b x 2.拉格朗日定理:满足条件: 罗必塔法则:( 型未定式)定理:和满足条件:1o;2o在点a的某个邻域内可导,且;3o 则:注意:1o法则的意义:把函数之比的极限化成了它们导数之比的
9、极限。 2o若不满足法则的条件,不能使用法则。 即不是型或型时,不可求导。 3o应用法则时,要分别对分子、分母 求导,而不是对整个分式求导。 4o若和还满足法则的条件, 可以继续使用法则,即: 5o若函数是型可采用代数变 形,化成或型;若是型可 采用对数或指数变形,化成或型。导数的应用1 切线方程和法线方程:设:切线方程:法线方程:2 曲线的单调性: 3.函数的极值:极值的定义:设在内有定义,是内的一点;若对于的某个邻域内的任意点,都有:则称是的一个极大值(或极小值),称为的极大值点(或极小值点)。 极值存在的必要条件:定理:称为的驻点极值存在的充足条件: 定理一: 当 渐增通过时,由(+)变
10、(-);则为极大值; 当渐增通过时,由(-)变(+);则为极小值。定理二: 若,则为极大值; 若,则为极小值。注意:驻点不一定是极值点,极值点也不一定是驻点。 4曲线的凹向及拐点:若;则在内是上凹的(或凹的),();若;则在内是下凹的(或凸的),(); 5。曲线的渐近线: 水平渐近线: 铅直渐近线:第三章 一元函数积分学3.1 不定积分一、 重要内容重要的概念及性质:1原函数:设: 若: 则称是的一个原函数, 并称是的所有原函数,其中C是任意常数。2不定积分: 函数的所有原函数的全体,称为函数的不定积分;记作:其中:称为被积函数;称为被积表达式;称为积分变量。 3. 不定积分的性质: 或: 或
11、: 分项积分法 (k为非零常数) 4.基本积分公式:换元积分法: 第一换元法:(又称“凑微元”法) 常用的凑微元函数有: 1o 2o 3o 4o 5o 6o 2.第二换元法: 第二换元法重要是针对具有根式的被积函数, 其作用是将根式有理化。 一般有以下几种代换: 1o (当被积函数中有时) 2o (当被积函数中有时) 3o (当被积函数中有时) 4o (当被积函数中有时)分部积分法: 1. 分部积分公式: 2.分部积分法重要针对的类型: 其中: (多项式) 3.选u规律: 在三角函数乘多项式中,令,其余记作dv;简称“三多选多”。 在指数函数乘多项式中,令,其余记作dv;简称“指多选多”。 在
12、多项式乘对数函数中,令,其余记作dv;简称“多对选对”。 在多项式乘反三角函数中,选反三角函数为u,其余记作dv;简称“多反选反”。 在指数函数乘三角函数中,可任选一函数为u,其余记作dv;简称“指三任选”。简朴有理函数积分: 1. 有理函数: 其中 是多项式。 2. 简朴有理函数: 3.2定积分 f(x)一 重要内容(一).重要概念与性质1. 定积分的定义: O a x1 x2 xi-1 i xi xn-1 b x定积分含四步:分割、近似、求和、取极限。定积分的几何意义:是介于x轴,曲线y=f(x),直线x=a,x=b之间各部分面积的代数和。x轴上方的面积取正号, yx 轴下方的面积取负号。
13、 + + a 0 - b x2. 定积分存在定理: 若:f(x)满足下列条件之一:若积分存在,则积分值与以下因素无关: 3. 牛顿莱布尼兹公式:*牛顿莱布尼兹公式是积分学中的核心定理,其作用是将一个求曲边面积值的问题转化为寻找原函数及计算差量的问题。4. 原函数存在定理: 5. 定积分的性质: y y y f(x) g(x) 1 f(x) 0 a c b x 0 a b x 0 a b x y y M f(x) f(x) m 0 a b x 0 a b x(二)定积分的计算:1. 换元积分 2. 分部积分 3. 广义积分 4. 定积分的导数公式 (三)定积分的应用1. 平面图形的面积: 与x轴
14、所围成的图形的面积 y f(x) . 求出曲线的交点,画出草图; . 拟定积分变量,由交点拟定积分上下限;. 应用公式写出积分式,并进行计算。2. 旋转体的体积及x轴所围图形绕x轴旋转所得旋转体的体积: 0 a b x及y轴所围成图形绕y轴旋转所得旋转体的体积: 第四章 多元函数微积分初步4.1 偏导数与全微分一. 重要内容:. 多元函数的概念2. 二元函数的定义: 3. 二元函数的几何意义:二元函数是一个空间曲面。(而一元函数是平面上的曲线). 二元函数的极限和连续:1. 极限定义:设z=f(x,y)满足条件:2. 连续定义:设z=f(x,y)满足条件:.偏导数: .全微分:1.定义:z=f(x,y) 在点(x,y)处的全微分。3. 全微分与偏导数的关系.复全函数的偏导数:1. 2. .隐含数的偏导数:1.2. .二阶偏导数:.二元函数的无条件极值1. 二元函数极值定义: 极大值和极小值统称为极值,极大值点和极小值点统称为极值点。 2.极值的必要条件:两个一阶偏导数存在,则:而非充足条件。例: 驻点不一定是极值点。4. 极值的充足条件: 求二元极值的方法:1. 求一阶偏导数,令2个一阶偏导数等于零,解出驻点。2. 求出P,根据极值的充足条件,判断驻点是否是极值点。3. 若驻点是极值点,求出极值。 二倍角公式:(含万能公式)