《高中数学公式大全~(完整版~).doc》由会员分享,可在线阅读,更多相关《高中数学公式大全~(完整版~).doc(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、|高中数学常用公式及常用结论1. 元素与集合的关系, .UxACxAx2.德摩根公式 .();()UUUBBC3.包含关系 AAAR4.容斥原理 ()()cardBcardBcard()CCcrB.() ()AcardC5集合 的子集个数共有 个;真子集有 1 个;非空子集有 12,n 2n2n2n1 个;非空的真子集有 2 个.6.二次函数的解析式的三种形式(1)一般式 ;()(0)fxabc(2)顶点式 ;2)hka(3)零点式 .1x7.解连不等式 常有以下转化形式(NfM()fx)()0fN|2x.1()fx8.方程 在 上有且只有一个实根,与 不等价,前者是后0)(21k 0)(21
2、kf者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在2acbxa内,等价于 ,或 且 ,或 且)(21k0)(21f0)(1kf10)(2kf.2kab9.闭区间上的二次函数的最值 二次函数 在闭区间 上的最值只能在 处及区)0()(acxf qp, abx2间的两端点处取得,具体如下:(1)当 a0 时,若 ,则qpb,2;minmax()(),()fxfff|, , .qpabx,2max()(),ffpqmini()(),fxfpq(2)当 a0)(1) ,则 的周期 T=a;)()af)(xf(2) ,0或 ,)(1(fxf或 ,af)或 ,则 的周期 T=2a;21()
3、(,()012xfxaf)(xf|(3) ,则 的周期 T=3a;)0()(1)(xfafxf )(xf(4) 且 ,则2121f1212(),0|)afxa的周期 T=4a;)(xf(5) ()(3(4)fxaxf,则 的周期 T=5a;ffx(6) ,则 的周期 T=6a.a30.分数指数幂 (1) ( ,且 ).1mna0,nN1(2) ( ,且 ).n,31根式的性质(1) .()a(2)当 为奇数时, ;na当 为偶数时, .n,0|32有理指数幂的运算性质(1) .(,)rsrsaQ(2) .()0(3) .,rrbbr注: 若 a0,p 是一个无理数,则 ap 表示一个确定的实数
4、上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式.logbaN(0,1)N34.对数的换底公式 ( ,且 , ,且 , ).llmaam10N推论 ( ,且 , ,且 , , ).oglmnb0an1n035对数的四则运算法则若 a0,a1,M0,N0,则(1) ;l()llogaaN(2) ;oga(3) .ll()naR36.设函数 ,记 .若 的定义域为)0()(2acbxxfm acb42)(xf,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要R0f0单独检验.37. 对数换底不等式及其推广|若 , , , ,则函数0ab0x1alog()ax
5、yb(1)当 时,在 和 上 为增函数.(,),), (2)当 时,在 和 上 为减函数.l()axy推论:设 , , ,且 ,则1nm0pa1(1) .log()logpmn(2) .2aa38. 平均增长率的问题如果原来产值的基础数为 N,平均增长率为 ,则对于时间 的总产值 ,有pxy.(1)xyNp39.数列的同项公式与前 n 项的和的关系( 数列 的前 n 项的和为 ).1,2nnsaa12nnsa40.等差数列的通项公式;*11()()nadanN其前 n 项和公式为 1()2ns1()2d.1dad41.等比数列的通项公式;*11()nnqN其前 n 项的和公式为 1(),nna
6、sq或 .1,nnsa42.等比差数列 : 的通项公式为n11,(0)nqadbq;(),nbdq其前 n 项和公式为|.(1),(1)nnbdqs43.分期付款(按揭贷款) 每次还款 元(贷款 元, 次还清,每期利率为 ).1)(nabxanb44常见三角不等式(1)若 ,则 .0,)2sitx(2) 若 ,则 .(x1ncos2(3) .|sin|cos|45.同角三角函数的基本关系式 , = , .22itacosita1ct46.正弦、余弦的诱导公式 21()in,sin(2sco21()s,s(2innconco47.和角与差角公式;sin()sicosin;co.tanta1t(平
7、方正弦公式);22sin()si()siin.coco= (辅助角 所在象限由点 的象限决定,iab2i)ab()ab).t48.二倍角公式 .sin2sico.2222coincs1sin.tata149. 三倍角公式 .3sin3i4sinisn()si()3(n 为偶数)(n 为奇数)(n 为偶数)(n 为奇数)|.3cos4cos4cos()s()3.2tant tantan150.三角函数的周期公式 函数 ,xR 及函数 ,xR(A, 为常数,且si()yxcos()yxA0,0)的周期 ;函数 , (A, 为常数,Ttan,2kZ且 A0,0)的周期 .51.正弦定理 .2sini
8、sinabcRBC52.余弦定理;22oA;cca.sb53.面积定理(1) ( 分别表示 a、b、c 边上的高).122abcShhabc、 、(2) .1sinsisinCAB(3) .22(|)()OABBO54.三角形内角和定理 在ABC 中,有 (.22)CA55. 简单的三角方程的通解.sin(1)arcsin(,|1kxaZa.o)co.t t,R特别地,有.sin(1)k.cos2Z.tat56.最简单的三角不等式及其解集.sin(|1)(arcsin,2arcsin),xxkkkZ.2.co| o,o,a.s()(rsrs).tnactn,),2xRxkkZ|.tan()(,
9、arctn),2xRxkkZ57.实数与向量的积的运算律设 、 为实数,那么(1) 结合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.58.向量的数量积的运算律:(1) ab= ba (交换律);(2)( a)b= ( ab)= ab= a( b);(3)( a+b)c= a c +bc.59.平面向量基本定理 如果 e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数 1、 2,使得 a= 1e1+ 2e2不共线的向量 e1、e 2叫做表示这一平面内所有向量的一组基底60向量平行的坐标表示 设 a= ,b=
10、,且 b 0,则 a b(b 0) .()xy(,)A1210xy53. a 与 b 的数量积(或内积)ab=|a|b|cos61. ab 的几何意义数量积 ab 等于 a 的长度| a|与 b 在 a 的方向上的投影| b|cos 的乘积62.平面向量的坐标运算(1)设 a= ,b= ,则 a+b= .1()xy2(,)12(,)xy(2)设 a= ,b= ,则 a-b= . (3)设 A ,B ,则 .12 21(,)ABOxy(4)设 a= ,则 a= .(,)R(,)(5)设 a= ,b= ,则 ab= .xy(,)1)xy63.两向量的夹角公式(a= ,b= ).122cosy1)2
11、(,64.平面两点间的距离公式=,ABd|AB(A ,B ).2211()()xy1(,)xy2(,)65.向量的平行与垂直 设 a= ,b= ,且 b 0,则2,xA|b b=a .121a b(a 0) ab=0 .2y66.线段的定比分公式 设 , , 是线段 的分点, 是实数,且 ,1(,)Pxy2(,)x(,)Px12P12P则 12y12O|( ).12()OPttP1t67.三角形的重心坐标公式 ABC 三个顶点的坐标分别为 、 、 ,则ABC 的重心的坐1Ax,y)2B(3Cxy)标是 .123123(,xyG68.点的平移公式 . hxhykyk OP注:图形 F 上的任意一
12、点 P(x,y)在平移后图形 上的对应点为 ,且 的F(,)Pxy坐标为 .(,)69.“按向量平移”的几个结论(1)点 按向量 a= 平移后得到点 .Pxy(,)hk(,)Pxhyk(2) 函数 的图象 按向量 a= 平移后得到图象 ,则 的函数解析式)fC,)kC为 .()yfhk(3) 图象 按向量 a= 平移后得到图象 ,若 的解析式 ,则 的函数 (, ()fx解析式为 .x(4)曲线 : 按向量 a= 平移后得到图象 ,则 的方程为C,)0fy(,)hk.(,fxhyk(5) 向量 m= 按向量 a= 平移后得到的向量仍然为 m= .(, (,)xy70. 三角形五“心”向量形式的
13、充要条件设 为 所在平面上一点,角 所对边长分别为 ,则OAB,ABCabc(1) 为 的外心 .C22O(2) 为 的重心 .0(3) 为 的垂心 .OA(4) 为 的内心 .abc(5) 为 的 的旁心 .ABABC71.常用不等式:(1) (当且仅当 ab 时取“=”号),abR2(2) (当且仅当 ab 时取“=”号)ab(3) 30,).cc(4)柯西不等式 222()()abddR(5) .ba72.极值定理已知 都是正数,则有yx,(1)若积 是定值 ,则当 时和 有最小值 ;pyxp2(2)若和 是定值 ,则当 时积 有最大值 .sx41s推广 已知 ,则有Ryx, y)()(22