抛物线知识点归纳总结与经典习题.doc

上传人:美****子 文档编号:58062666 上传时间:2022-11-06 格式:DOC 页数:13 大小:444KB
返回 下载 相关 举报
抛物线知识点归纳总结与经典习题.doc_第1页
第1页 / 共13页
抛物线知识点归纳总结与经典习题.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《抛物线知识点归纳总结与经典习题.doc》由会员分享,可在线阅读,更多相关《抛物线知识点归纳总结与经典习题.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、抛物线经典结论和例题抛物线xyOlFxyOlFlFxyOxyOlF定义平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线。=点M到直线的距离范围对称性关于轴对称关于轴对称焦点(,0)(,0)(0,)(0,)焦点在对称轴上顶点离心率=1准线方程准线与焦点位于顶点两侧且到顶点的距离相等。顶点到准线的距离焦点到准线的距离焦半径焦 点弦 长oxFy焦点弦的几条性质以为直径的圆必与准线相切假设的倾斜角为,那么假设的倾斜角为,那么 切线方程1. 直线与抛物线的位置关系直线,抛物线,消y得:1当k=0时,直线与抛物线的对称轴平行,有一个交点;2当k0时, 0

2、,直线与抛物线相交,两个不同交点; =0, 直线与抛物线相切,一个切点; 0,直线与抛物线相离,无公共点。(3) 假设直线与抛物线只有一个公共点,那么直线与抛物线必相切吗不一定2. 关于直线与抛物线的位置关系问题常用处理方法直线: 抛物线, 联立方程法: 设交点坐标为,,那么有,以及,还可进一步求出, 在涉及弦长,中点,对称,面积等问题时,常用此法,比方a. 相交弦AB的弦长 或 b. 中点, , 点差法:设交点坐标为,代入抛物线方程,得 将两式相减,可得所以a. 在涉及斜率问题时,b. 在涉及中点轨迹问题时,设线段的中点为,即,同理,对于抛物线,假设直线与抛物线相交于两点,点是弦的中点,那么

3、有注意能用这个公式的条件:1直线与抛物线有两个不同的交点,2直线的斜率存在,且不等于零一、抛物线的定义及其应用例1、设P是抛物线y24x上的一个动点(1)求点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值;(2)假设B(3,2),求|PB|PF|的最小值例2、设M(x0,y0)为抛物线C:x28y上一 点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,那么y0的取值范围是() A(0,2)B0,2 C(2,) D2,)二、抛物线的标准方程和几何性质例3、抛物线y22px(p0)的焦点为F,准线为l,经过F的直线与抛物线交于A、B两点,交准线于C点,点A在x

4、轴上方,AKl,垂足为K,假设|BC|2|BF|,且|AF|4,那么AKF的面积是 ()A4 B3 C4 D8例4、过抛物线y22px(p0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,假设|BC|2|BF|,且|AF|3那么此抛物线的方程为 ( ) Ay2xBy29x Cy2x Dy23x三、抛物线的综合问题例5、过抛物线y22px(p0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10)上,M点到抛物线C的焦点F的距离为2,直线l:yxb与抛物线C交于A,B两点(1)求抛物线C的方程;(2)假设以AB为直径的圆与x轴相切,求该圆的方程练习题1抛物线x2ay

5、的焦点恰好为双曲线y2x22的上焦点,那么a等于( A1B4 C8 D162抛物线y4x2上的一点M到焦点的距离为1,那么点M的纵坐标是 ( )A B C. D.3(2021辽宁高考)F是拋物线y2x的焦点,A,B是该拋物线上的两点,|AF|BF|3,那么线段AB的中点到y轴的距离为 () A. B1 C. D.4抛物线y22px,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A相离 B相交 C相切 D不确定5F为抛物线y28x的焦点,过F且斜率为1的直线交抛物线于A、B两点,那么|FA|FB|的值等于 () A4 B8C 8 D166在y2x2上有一点P,它到A(1,3)的距离与它到焦

6、点的距离之和最小,那么点P的坐标是 ()A(2,1) B(1,2) C(2,1) D(1,2) 7设抛物线y28x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足如果直线AF的斜率为,那么|PF| ()A4 B8 C8 D168抛物线的顶点在原点,准线方程为x2,抛物线的方程 Ay28x By28x Cy24x Dy24x9以抛物线x216y的焦点为圆心,且与抛物线的准线相切的圆的方程为_10抛物线的顶点在原点,对称轴为y轴,抛物线上一点Q(3,m)到焦点的距离是5,那么抛物线的方程为_11抛物线y24x与直线2xy40相交于A、B两点,抛物线的焦点为F,那么| | | | _.12过

7、抛物线y24x的焦点作直线交抛物线于A(x1,y1),B(x2, y2)两点,假设x1x26,那么 |AB|等于_13根据以下条件求抛物线的标准方程:(1)抛物线的焦点是双曲线 16x29y2144的左顶点;(2)过点P(2,4)14点A(1,0),B(1,1),抛物线C:y24x,O为坐标原点,过点A的动直线l交抛物线C于M,P两点,直线MB交抛物线C于另一点Q.假设向量与的夹角为,求POM的面积解析一、抛物线的定义及其应用例1、(1)如图,易知抛物线的焦点为F(1,0),准线是x1.由抛物线的定义知:点P到直线x1的距离等于点P到焦点F的距离于是,问题转化为:在曲线上求一点P,使点P到点A

8、(1,1)的距离与点P到F(1,0)的距离之和最小显然,连结AF交曲线于P点,那么所求的最小值为|AF|,即为.(2)如图,自点B作BQ垂直准线于Q,交抛物线于点P1,那么|P1Q|P1F|.那么有|PB|PF|P1B|P1Q|BQ|4.即|PB|PF|的最小值为4.例2、解析:圆心到抛物线准线的距离为p,即p4,根据已 知只要|FM|4即可根据抛物线定|FM|y02由y024,解得y02,故y0的取值范围是(2,)二、抛物线的标准方程和几何性质例3、设点A(x1,y1),其中y1B作抛物线的准线的垂线,垂足为B1.那么有 |BF|BB1|;又|CB|2|FB|,因此有|CB|2|BB1|,c

9、osCBB1,CBB1.即直线AB与x轴的夹角为.又|AF|AK|x14,因此y14sin2,因此AKF的面积等于|AK|y1424.例4分别过点A、B作AA1、BB1垂直于l,且垂足分别为A1、B1,由条件|BC|2|BF|得|BC|2|BB1|,BCB130,又|AA1|AF|3,|AC|2|AA1|6,|CF|AC|AF|633,F为线段AC的中点故点F到准线的距离为p|AA1|,故抛物线的方程为y23x.三、抛物线的综合问题例5、(1)直线AB的方程是y2(x),与y22px联立,从而有4x25pxp20,所以:x1x2,由抛物线定义得:|AB|x1x2p9,所以p4,从而抛物线方程是

10、y28x.(2)由p4,4x25pxp20可简化为x25x40,从而x11,x24,y12,y24,从而A(1,2),B(4,4);设 (x3,y3)(1,2)(4,4)(41,42)又y8x3,即2(21)28(41)即(21)240,或2.例6、 (1)设动点P的坐标为(x,y),由题意有|xy22x2|x|.当x0时,y24x;当x0时,y0.所以,动点P的轨迹C的方程为y24x(x0)和y0(x0)的准线为x,由抛物线定义和条件可知|MF|1()12,解得p2, 故所求抛物线C的方程为y24x.(2)联立消去x并化简整理得y28y8b0.依题意应有6432b0,解得bA(x1,y1),

11、B(x2,y2),那么y1y28,y1y28b,设圆心Q(x0,y0),那么应用x0,y04.因为以AB为直径的圆与x轴相切,所以圆的半径为r|y0|4.又|AB|所以|AB|2r8,解得b.所以x1x22b2y12b2y24b16,那么圆心Q的坐标为(,4)故所求圆的方程为(x)2(y4)216.练习题:1解析:根据抛物线方程可得其焦点坐标为(0,),双曲线的上焦点为(0,2),依题意那么有2解得a8.2解析:抛物线方程可化为x2,其准线方程为y.设M(x0,y0),那么由抛物线的定义,可知y01y0.3解析:根据拋物线定义与梯形中位线定理,得线段AB中点到y轴的距离为:(|AF|BF|).

12、4解析:设抛物线焦点弦为AB,中点为M,准线l,A1、B1分别为A、B在直线l上的射影,那么|AA1|AF|,|BB1|BF|,于是M到l的距离d(|AA1|BB1|)(|AF|BF|)|AB|半径,故相切5解析:依题意F(2,0),所以直线方程为yx2由,消去y得x212xA(x1,y1),B(x2,y2),那么|FA|FB|(x12)(x22)|x1x2|8.6解析:如下图,直线l为抛物线y2x2的准线,F为其焦点,PNl,AN1l,由抛物线的定义知,|PF|PN|,|AP|PF|AP|PN|AN1|,当且仅当A、P、N三点共线时取等号P点的横坐标与A点的横坐标一样即为1,那么可排除A、C

13、、D.答案:B7解析:设抛物线y28x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足如果直线AF的斜率为,那么|PF| ()A4 B8C8 D168解析:由准线方程x2,可知抛物线为焦点在x轴正 ,半轴上的标准方程,同时得p4,所以标准方程为 y22px8x9解析:抛物线的焦点为F(0,4),准线为y4,那么圆心为(0,4),半径r8. 所以,圆的方程为x2(y4)264.10解析:设抛物线方程为x2ay(a0),那么准线为y.Q(3,m)在抛物线上,9am.而点Q到焦点的距离等于点Q到准线的距离,|m(m代入,得|5,解得,a2,或a18,所求抛物线的方程为x22y,或x218y.

14、11解析:由,消去y,得x25x40(*),方程(*)的两根为A、B两点的横坐标,故x1x25,因为抛物线y24x的焦点为F(1,0),所以| | | | (x11)(x21)712解析:因线段AB过焦点F,那么|AB|AF|BF|.又由抛物线的定义知|AF|x11,|BF|x21,故|AB|x1x228.13解析:双曲线方程化为1,左顶点为(3,0),由题设抛物线方程为y22px(p0),那么3,p6,抛物线方程为y212x.(2)由于P(2,4)在第四象限且抛物线对称轴为坐标轴,可设抛物线方程为y2mx或x2ny,代入P点坐标求得m8,n1,所求抛物线方程为y28x或x2y.14解:设点M(,y1),P(,y2),P,M,A三点共线,kAMkPM,即,即,y1y24. y1y25.向量 与 的夹角为,| | |cos5.SPOM| | | | sin.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 文案大全

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁