《2022年人教版八年级下册数学知识点归纳2 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版八年级下册数学知识点归纳2 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级下学期数学知识点归纳第十六章分式16.1 分式1.分式:如果 A、B表示两个整式,并且分母中含有字母,那么式子BA叫做分式。(分母含有未知数 的代数式称为分式)2.分式有意义的条件:分母不为零。(即BA中 B0)3.分式值为零的条件:1 分子为零2 分母不为零 (即BA中 A=0且 B0)4.分数的基本性质:分式的分子与分母同乘以(或除以)同一个不为0 的整式,分式的值不变。用式子表示为:或(C0)5.最简分式:分子、分母没有公因式的分式叫最简分式。找公因式的方法:将分子、分母分解因式后1 取分式的分子、分母中系数的最大公约数、相同字母的最低次幂、相同因式的最低次幂的积,作为分子、
2、分母的公因式。约分化简方法:1 将分子、分母分解因式2约去公因式6.通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫做分式的通分。通分方法:1 把各个分式的分母进行因式分解2 找出各分式的最简公分母3 用分式的性质把各个异分母分式化为同分母分式找最简公分母的方法:取各分式分母中系数(系数都取正数)的最小公倍数、所有字母的最高次幂、所有因式的最高次幂的乘积,作为最简公分母。16.2 分式的运算1.分式乘法法则:分式乘分式,用分子的乘积作为积的分子,分母的乘积作为分母。表达式:bdbdacac?分式乘方法则:分式乘方要把分子、分母分别乘方。2.分式除法法则:分式除以分式,等于把除式颠倒
3、分子、分母后与被除式相乘,再将所得结果约分。表达式:bcbdbdadacac?3.乘除与乘方的混合运算顺序:先算乘方,再算乘除。4.分式的加减法则:同分母 的分式相加减,分母不变,分子相加减。即:0bcbcaaaa异分母 的分式相加减,先通分,变为同分母分式,再加减。CBCABACBCABAnnnbaba)(即:0,0bdbcdabcdaacacacacac5.负整数指数幂:na=na1(a0,n 是正整数)6.整数指数幂性质:同正整数指数幂运算性质(1)同底数的幂的乘法:nmnmaaa;(2)幂的乘方:mnnmaa)(;(3)积的乘方:nnnbaab)(;(4)同底数的幂的除法:nmnmaa
4、a(a 0);(5)商的乘方:nnnbaba)(;(b0)7.科学计数法:将一个数字表示成a10n的形式,其中 1|a|0 K 0 时,双曲线在第一、三象限。在每个象限内,y 随 x 的增大而减小。x 的取值范围是 x0,y的取值范围是 y0;当 k0 时,双曲线在第二、四象限。在每个象限内,y 随 x 的增大而增大。3.|k|的几何意义:表示反比例函数图像上的某一点,向两条坐标轴所作的垂线与x 轴、y 轴围成的矩形的面积。如图:S四边形OAPB=|k|4、反比例函数解析式的确定-待定系数法。由于在反比例函数xky中,只有一个待定系数 k,因此 只需要一对 x、y 的对应值 或图像上的一个点的
5、坐标,即可求出 k 的值,从而确定函数解析式。x y 0 1 2 y=k x y=x y=-x 文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8
6、B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4
7、C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8
8、B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4
9、C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8
10、B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4
11、C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2第十八章勾股定理18.1 勾股定理1.勾股定理:直角三角形的两条直角边长的平方和等于斜边长的平方。(如果直角三角形的两条直角边长分别为a,b,斜边长为 c,那么 a2b2=c2)2.定理:经过证明被确认正确的命题。3.勾股定理的证明方法:方法一:将四个全等的直角三
12、角形拼成如图(1)所示的正方形。图(1)中,所以。方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。图(2)中,所以。4.利用勾股定理,可以作出2、3、5、7、13、1718.2 勾股定理的逆定理1.勾股定理逆定理:如果三角形三边长a、b、c,满足 a2b2=c2,那么这个三角形是直角三角形。2.原命题、逆命题:如果一个命题的题设和结论是另一个命题的结论和题设,我们把这样的两个命题叫做 互为逆命题。如果把其中的一个叫 原命题,那么另一个就是它的 逆命题。3.如果一个定理的逆命题经过证明也是真命题,那么它也是一个定理。这两个定理称为互逆定理。4.满足 a2b2=c2 的正整数称为正整数。
13、如(3,4,5),(6,8,10),(5,12,13)(7,24,25),(9,40,41),(8,15,17),(12,35,37)5.直角三角形的判定、有一个角是直角的三角形是直角三角形。、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。、勾股定理的逆定理:如果三角形的三边长a,b,c 有关系222cba,那么这个三角形是直角三角形。文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文
14、档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T
15、2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文
16、档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T
17、2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文
18、档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T
19、2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2第
20、十九章四边形“四边形”关系结构图:19.1 平行四边形1.平行四边形 定义:有两组对边分别平行的四边形叫做平行四边形。2.平行四边形 性质:1 平行四边形的对边相等;2 平行四边形的对角相等;3 平行四边形的对角线互相平分。3.平行四边形 判定:两组对边分别平行的四边形是平行四边形。(定义)两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两组对角分别相等的四边形是平行四边形。对角线互相平分的四边形是平行四边形。(归纳:平行四边形的性质和判定都从边、角、对角 线三方面来看)4.三角形中位线-连接三角形两边中点的线段。三角形中位线性质:三角形的中位线平行于三角形的第三
21、边,且等于第三边的一半。5.推论:夹在两条平行线间的平行线段相等。两条平行线间的距离:过一条直线上的任意一点作它的平行线的垂线,垂线段的长度称为两条平行线间的距离。19.2 特殊的平行四边形文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:
22、CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L
23、1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:
24、CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L
25、1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:
26、CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L
27、1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J219.2.1 矩形1.矩形定义:有一个角是直角的平行四边形叫做矩形。2.矩形性质:1 矩形的四个角都是直角;2 矩形的对角线相等且互相平分。3.推论-直角三角形性质:1
28、在直角三角形中,如果一个角等于30,那么 30角所对的直角边等于斜边的一半。2 直角三角形斜边上的中线等于斜边的一半。4.矩形判定:1 有一个角是直角 的平行四边形 是矩形。(定义)2有三个角是直角的 四边形 是矩形。3对角线相等的 平行四边形 是矩形。19.2.2 菱形1.菱形定义:有一组邻边相等的平行四边形叫做菱形。2.菱形性质:1菱形的四边都相等;2 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。3.菱形判定:1 一组邻边相等 的平行四边形 是菱形。(定义)2四条边相等的 四边形 是菱形。3 对角线互相垂直的 平行四边形 是菱形。4.面积计算:S菱形=1/2ab(a、b 为两条
29、对角线的长)19.2.3 正方形1.正方形:四条边相等,四个角相等的四边形叫做正方形。2.正方形性质:(正方形既是矩形,又是菱形。所以它具有矩形的性质,又具有菱形的性质。)正方形的四边相等,四个角都是直角,两条对角线相等且互相垂直平分,每条对角线平分一组对角。3.正方形判定:1 对角线相等的 菱形是正方形。2 有一个角为直角的 菱形是正方形。3 对角线互相垂直的 矩形是正方形。4 一组邻边相等的 矩形 是正方形。5 一组邻边相等且有一个角是直角的平行四边形 是正方形。6 对角线互相垂直且相等的 平行四边形是正方形。7 对角线互相垂直,平分且相等的 四边形 是正方形。8 一组邻边相等,有三个角是
30、直角的 四边形 是正方形。19.3 梯形1.梯形:一组对边平行,另一组对边不平行的四边形叫做梯形。文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T
31、8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL
32、4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T
33、8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL
34、4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T
35、8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL
36、4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J22.等腰梯形:两腰相等的梯形。等腰梯形的性质:1 等腰梯形同一底边上的两个角相等;2 等腰梯形两条对角线相等。等腰梯形的判定:1 同一底边上的两个角相等的梯形是等腰梯形。2 两条对角线相等的梯形是等腰梯形。3.直角梯形:有一个角是直角的梯形。4.解决梯形问题常用
37、的 辅助线:5.梯形中位线-连接梯形两腰中点的线段称为梯形的中位线。梯形中位线性质:梯形的中位线平行于梯形的两底,并等于两底和的一半。19.4 重心1.重心:简单说就是物体的平衡点。2.线段的重心:线段的中点。3.平行四边形的重心:两条对角线的交点。4.三角形的重心:三条中线的交点。三角形重心的性质:1 三角形的重心把三角形的中线分成1:2 两段。如图 G为重心,则 GD:AG=GE:BG=1:2 2 重心和三角形顶点的连线把三角形分成面积相等的三个三角形(各为总面积的13)。如图 G为重心,则ABGBCGCAGABC1S=S=S=S35.黄金矩形:宽和长的比是21-5(约为 0.618)的矩
38、形。6.中点四边形:依次连接任意四边形各边中点所得的四边形。中点四边形性质:1 中点四边形的形状始终是平行四边形。2 中点四边形的面积为原四边形面积的一半。第二十章数据的分析20.1 数据的代表1.加权平均数:若 n 个数n21xxx,的权分别是n21www,G A B C D E 文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4
39、J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 H
40、A8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4
41、J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 H
42、A8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4
43、J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 H
44、A8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2则n21nn2211wwwwxwxwx叫做这个数的加权平均数。2中位数:将一
45、组数据按照从大到小(或者从小到大)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则处于中间位置的两个数的平均数就是这组数据的中位数。3众数:一组数据中出现次数最多的数据就是这组数据的众数。20.2 数据的波动1.极差:一组数据中的最大数据和最小数据的差叫做这组数据的极差。可以反映数据的波动范围,但受极端值的影响较大。2.方差:若 n 个数据n21xxx,各数据与平均数的差的平方分别是21x-x)(,22x-x)(,23x-x)(,我们用它们的平均数,即用2S=nx-xx-xx-x2n2221)()()(来衡量这组数据的波动大小,并把它叫做这组数
46、据的方差,记做2S。方差的性质:方差越大,数据的波动越大;方差越小,数据的波动越小。3.统计分析数据步骤:1 收集数据2 整理数据3 描述数据4 分析数据5撰写调查报告6 交流文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8
47、B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4
48、C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8
49、B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4
50、C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8B5Y7 HA8T2D4L1D9 ZL4C9M9D4J2文档编码:CF2Q9T8