第十一章-频率响应-多频正弦稳态电路优秀PPT.ppt

上传人:1398****507 文档编号:57955998 上传时间:2022-11-06 格式:PPT 页数:40 大小:887KB
返回 下载 相关 举报
第十一章-频率响应-多频正弦稳态电路优秀PPT.ppt_第1页
第1页 / 共40页
第十一章-频率响应-多频正弦稳态电路优秀PPT.ppt_第2页
第2页 / 共40页
点击查看更多>>
资源描述

《第十一章-频率响应-多频正弦稳态电路优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第十一章-频率响应-多频正弦稳态电路优秀PPT.ppt(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第十一章第十一章 频率响应频率响应11-1 基本概念基本概念11-2 再论阻抗和导纳再论阻抗和导纳11-3 正弦稳态网络函数正弦稳态网络函数11-4 正弦稳态的叠加正弦稳态的叠加11-5 平均功率的叠加平均功率的叠加11-6 RLC电路的谐振电路的谐振1第一章 电路分析的基础学问本章(次课)教学要求本章(次课)教学要求l1、理解非正弦周期信号的特性;、理解非正弦周期信号的特性;l2、进一步理解阻抗与导纳的概念;、进一步理解阻抗与导纳的概念;l3、理解正弦稳态网络函数的概念;、理解正弦稳态网络函数的概念;l4、驾驭正弦稳态的叠加原理及应用、驾驭正弦稳态的叠加原理及应用;l5、驾驭平均功率的叠加。

2、、驾驭平均功率的叠加。l6、驾驭电路谐振的概念,谐振电路的特点及分析。、驾驭电路谐振的概念,谐振电路的特点及分析。重点重点 正弦稳态网络函数;正弦稳态网络函数;正弦稳态的叠加原理及应用;正弦稳态的叠加原理及应用;谐振电路的特点及分析谐振电路的特点及分析。难点难点 非正弦周期信号,功率叠加非正弦周期信号,功率叠加2第一章 电路分析的基础学问第十一章第十一章 频率响应频率响应11.1 基本概念基本概念1、相量法的应用前提相量法的应用前提2、多个频率正弦信号激励的电路分析方法、多个频率正弦信号激励的电路分析方法单一频率正弦信号激励的稳态线性电路。单一频率正弦信号激励的稳态线性电路。先用相量法求各频率

3、信号单独激励的正弦稳先用相量法求各频率信号单独激励的正弦稳态响应,再用叠加原理求总的稳态响应。态响应,再用叠加原理求总的稳态响应。3第一章 电路分析的基础学问11.1 基本概念(续)基本概念(续)3、周期函数分解为傅里叶级数、周期函数分解为傅里叶级数直流重量直流重量直流重量直流重量谐波重量谐波重量谐波重量谐波重量 为基波或一次谐波;为基波或一次谐波;为基波或一次谐波;为基波或一次谐波;k k 为为为为 k k 次谐波。次谐波。次谐波。次谐波。傅里叶级数的系数傅里叶级数的系数傅里叶级数的系数傅里叶级数的系数 a a0 0、a ak k、b bk k可用积分公式计算。(见高可用积分公式计算。(见高

4、可用积分公式计算。(见高可用积分公式计算。(见高等数学)等数学)等数学)等数学)当函数为偶函数(纵轴对称)时,有当函数为偶函数(纵轴对称)时,有当函数为偶函数(纵轴对称)时,有当函数为偶函数(纵轴对称)时,有 b bk k=0=0当函数为奇函数(原点对称)时,有当函数为奇函数(原点对称)时,有当函数为奇函数(原点对称)时,有当函数为奇函数(原点对称)时,有 a ak k=0=0当函数为镜对称函数时,有当函数为镜对称函数时,有当函数为镜对称函数时,有当函数为镜对称函数时,有 a a2k2k=b=b2k2k=0=0,即只有奇次波。,即只有奇次波。,即只有奇次波。,即只有奇次波。4第一章 电路分析的

5、基础学问4、典型波形的傅里叶级数、典型波形的傅里叶级数 P112(1 1 1 1)矩形波的傅立叶级数绽开式)矩形波的傅立叶级数绽开式)矩形波的傅立叶级数绽开式)矩形波的傅立叶级数绽开式f(t)A-A02ttT/2T5第一章 电路分析的基础学问(2 2 2 2)三角波的傅立叶级数绽开式)三角波的傅立叶级数绽开式)三角波的傅立叶级数绽开式)三角波的傅立叶级数绽开式f(t)A-A0tT/2T6第一章 电路分析的基础学问(3 3 3 3)锯齿波的傅立叶级数绽开式)锯齿波的傅立叶级数绽开式)锯齿波的傅立叶级数绽开式)锯齿波的傅立叶级数绽开式f(t)A02 TtT(4 4 4 4)整流全波的傅立叶级数绽开

6、式)整流全波的傅立叶级数绽开式)整流全波的傅立叶级数绽开式)整流全波的傅立叶级数绽开式f(t)A0T/2tT7第一章 电路分析的基础学问11.2 再论阻抗与导纳再论阻抗与导纳1、阻抗与导纳的计算、阻抗与导纳的计算RLRL串联电路串联电路串联电路串联电路8第一章 电路分析的基础学问1、阻抗与导纳的计算(续)、阻抗与导纳的计算(续)RLRL并联电路并联电路并联电路并联电路导纳导纳导纳导纳例例例例10-1 P11510-1 P1159第一章 电路分析的基础学问2、阻抗的频率特性、阻抗的频率特性幅频特性:阻抗的模随频率变更的关系。幅频特性:阻抗的模随频率变更的关系。RCRC并联电路阻抗并联电路阻抗并联

7、电路阻抗并联电路阻抗的频率特性的频率特性的频率特性的频率特性相频特性:阻抗的幅角随频率变更的关系。相频特性:阻抗的幅角随频率变更的关系。例例例例10-2 P11710-2 P117频率特性:阻抗随频率变更的关系,也称频率响应。频率特性:阻抗随频率变更的关系,也称频率响应。RCRC并联电路阻抗的频率特性曲线并联电路阻抗的频率特性曲线并联电路阻抗的频率特性曲线并联电路阻抗的频率特性曲线 P117 P117图图图图10-510-510第一章 电路分析的基础学问11.3 正弦稳态网络函数正弦稳态网络函数l定义定义对于如图网络对于如图网络称为幅频特性称为幅频特性称为幅频特性称为幅频特性称为相频特性称为相

8、频特性称为相频特性称为相频特性频率响应频率响应频率响应频率响应11第一章 电路分析的基础学问RC低通网络低通网络 见见见见P119P119例例例例10-310-3幅频特性,幅频特性,幅频特性,幅频特性,相频特性相频特性相频特性相频特性 截止频率截止频率 低通网络也称低通网络也称低通网络也称低通网络也称相位滞后网络相位滞后网络相位滞后网络相位滞后网络12第一章 电路分析的基础学问RC高通网络高通网络 见见见见P121P121练习题练习题练习题练习题10-110-1幅频特性,幅频特性,幅频特性,幅频特性,相频特性相频特性相频特性相频特性 截止频率截止频率 高通网络也称高通网络也称高通网络也称高通网

9、络也称相位超前网络相位超前网络相位超前网络相位超前网络13第一章 电路分析的基础学问其它的低通和高通网络其它的低通和高通网络低通低通低通低通高通高通高通高通低通低通低通低通高通高通高通高通低通低通低通低通14第一章 电路分析的基础学问11-4 正弦稳态响应的叠加正弦稳态响应的叠加11.4.1 正弦稳态叠加原理正弦稳态叠加原理 几几个个频频率率相相同同或或不不同同的的正正弦弦激激励励在在线线性性时时不不变变电电路路中中产产生生的的稳稳态态电电压压和和电电流流,可可以以利利用用叠叠加加定定理理求求解解先先用用相相量量法法分分别别计计算算每每个个正正弦弦激激励励单单独独作作用用时时产产生生的的电电压

10、压电电流流相相量量,然然后后得得到到电电压压uk(t)电电流流和和ik(t),最终相加求得总的稳态电压,最终相加求得总的稳态电压u(t)和电流和电流i(t)。l留意事项:留意事项:激励源频率相同时,可以用相量叠加;参见激励源频率相同时,可以用相量叠加;参见P124例例10-4激励源频率不同时,叠加必需在时域进行。激励源频率不同时,叠加必需在时域进行。15第一章 电路分析的基础学问举例举例解解:1.电电压压源源单单独独作作用用时时,将将电电流流源源以以开开路路代代替替,得得图图(b)相量模型,则相量模型,则:图图(a)中,中,uS(t)=20cos(100t+10)V,试用叠加定理求稳态电压试用

11、叠加定理求稳态电压u(t)。16第一章 电路分析的基础学问由相量写出相应的时辰表达式由相量写出相应的时辰表达式 2.电电流流源源单单独独作作用用时时,将将电电压压源源用用短短路路代代替替,得得图图(c)所示相量模型,则所示相量模型,则:由相量写出相应的时辰表达式由相量写出相应的时辰表达式 17第一章 电路分析的基础学问3.叠加求稳态电压叠加求稳态电压u(t)将每个正弦电源单独作用时产生的电压在时间域相将每个正弦电源单独作用时产生的电压在时间域相加,得到非正弦稳态电压加,得到非正弦稳态电压:18第一章 电路分析的基础学问 的波形如图的波形如图(a)所示。所示。图图(b)绘出绘出 的波形。的波形。

12、可见,两个不同频率正弦波相加得到一个非正弦周期可见,两个不同频率正弦波相加得到一个非正弦周期波形。波形。两个不同频率的正弦波形的叠加两个不同频率的正弦波形的叠加 波形图波形图19第一章 电路分析的基础学问11.4.2 非正弦周期电流电路的计算非正弦周期电流电路的计算l方法:正弦稳态叠加方法:正弦稳态叠加l将非正弦周期函数分解为傅里叶级数;将非正弦周期函数分解为傅里叶级数;l令各频率重量单独作用,应用叠加定理求令各频率重量单独作用,应用叠加定理求解。解。例例例例11-6 11-6 激励源为方波时的响应分析激励源为方波时的响应分析激励源为方波时的响应分析激励源为方波时的响应分析 PP.126-12

13、9 PP.126-129解题说明:解题说明:解题说明:解题说明:本例事实上是在电感与电阻的串联电路中,求电感的分压。本例事实上是在电感与电阻的串联电路中,求电感的分压。本例事实上是在电感与电阻的串联电路中,求电感的分压。本例事实上是在电感与电阻的串联电路中,求电感的分压。由于电感对不同频率有着不同的感抗,故有不同的分压和由于电感对不同频率有着不同的感抗,故有不同的分压和由于电感对不同频率有着不同的感抗,故有不同的分压和由于电感对不同频率有着不同的感抗,故有不同的分压和不同的相移。不同的相移。不同的相移。不同的相移。由网络函数可知,这是一个高通电路。由网络函数可知,这是一个高通电路。对于直流重量

14、,对于直流重量,当频率足够高时,当频率足够高时,20第一章 电路分析的基础学问例例例例11-6 11-6 激励源为方波时的响应分析激励源为方波时的响应分析激励源为方波时的响应分析激励源为方波时的响应分析 PP.126-129 PP.126-129本例中,由于本例中,由于本例中,由于本例中,由于R R的值较小,求电感的分压对频率的变更并不的值较小,求电感的分压对频率的变更并不的值较小,求电感的分压对频率的变更并不的值较小,求电感的分压对频率的变更并不敏感。见敏感。见敏感。见敏感。见P128 P128 表表表表10-110-1频率越高,输出电压衰减越小。频率越高,输出电压衰减越小。本例中当本例中当

15、本例中当本例中当R=500R=500时,时,时,时,网络函数为网络函数为21第一章 电路分析的基础学问11.5 平均功率的叠加平均功率的叠加11.5.1 非正弦周期信号的有效值任一周期信号的有效值任一周期信号的有效值 I 定义为:定义为:非正弦周期电流的有效值非正弦周期电流的有效值即直流重量的平方与各次谐波有效值平方之和的平方根。即直流重量的平方与各次谐波有效值平方之和的平方根。即直流重量的平方与各次谐波有效值平方之和的平方根。即直流重量的平方与各次谐波有效值平方之和的平方根。22第一章 电路分析的基础学问例例 若电压 u=30 sint+40 cos(3t-2/3)+40 cos(3t+2/

16、3)V,其中=1000 rad/s,则电压的有效值为_V。(A)110 (B)(C)10 (D)70 (E)50E23第一章 电路分析的基础学问11.5.2 平均功率的叠加平均功率的叠加 P131例例1如图所示电路,电阻如图所示电路,电阻R消耗的消耗的平均功率平均功率P=_W。(A)0 (B)2 (C)5 (D)4 直流电源作用时:直流电源作用时:直流电源作用时:直流电源作用时:P P0 0=4W=4W沟通电源作用时:沟通电源作用时:沟通电源作用时:沟通电源作用时:P1=0WP1=0W所以:所以:所以:所以:P P =4W=4WD 多个不同频率的独立正弦电源在电路中产生的平均多个不同频率的独立

17、正弦电源在电路中产生的平均多个不同频率的独立正弦电源在电路中产生的平均多个不同频率的独立正弦电源在电路中产生的平均功率,等于各电源单独作用时所产生的平均功率的功率,等于各电源单独作用时所产生的平均功率的功率,等于各电源单独作用时所产生的平均功率的功率,等于各电源单独作用时所产生的平均功率的总和。总和。总和。总和。24第一章 电路分析的基础学问例例2 图示电路中,图示电路中,R=150,L=100,1/(C)=900,电压电压 u=3001+sin t+cos3 tV,求各电表读数和电路的总平求各电表读数和电路的总平均功率均功率。解:本例按正弦相量求解解:本例按正弦相量求解对于直流重量对于直流重

18、量:I10=I20=2A,UC0=0对于基波分量对于基波分量:25第一章 电路分析的基础学问对于三次谐波重量对于三次谐波重量:可见,电路发生并联谐振。可见,电路发生并联谐振。可见,电路发生并联谐振。可见,电路发生并联谐振。I I1313=0=0电流表电流表A1,A2的读数:的读数:电压表电压表V的读数:的读数:总的有功功率:总的有功功率:图示电路中,图示电路中,R=150,L=100,1/(C)=900,电压电压 u=3001+sin t+cos3 tV,求各电表读数(有效值电表)求各电表读数(有效值电表)和电路的总平均功率和电路的总平均功率。I10=I20=2A,UC0=0例例例例2 2(续

19、)(续)(续)(续)26第一章 电路分析的基础学问非正弦周期电路的功率非正弦周期电路的功率设:设:设:设:则网络的功率为:则网络的功率为:则网络的功率为:则网络的功率为:即平均功率为直流功率和各次谐波平均功率之算术和。即平均功率为直流功率和各次谐波平均功率之算术和。即平均功率为直流功率和各次谐波平均功率之算术和。即平均功率为直流功率和各次谐波平均功率之算术和。27第一章 电路分析的基础学问例例 3 若电压若电压 u=10+20sin(t-30)+8sin(3 t-60)V,电流电流 i=3+6sin(t+30)+2sin5 tA,则该电路的平均功率为则该电路的平均功率为 _W。6028第一章

20、电路分析的基础学问谐振频率谐振频率11.6 RLC电路的谐振电路的谐振l11.6.1 串联谐振串联谐振幅频特性幅频特性幅频特性幅频特性相频特性相频特性相频特性相频特性29第一章 电路分析的基础学问串联谐振的特点串联谐振的特点lZ最小,最小,I 最大最大Z=R,I0=U/R若若R=0,即相当于短路。,即相当于短路。0感性。感性。l电路呈阻性电路呈阻性 l相量图相量图 大小相等,方向相反;大小相等,方向相反;可能有:可能有:UL=UCU 30第一章 电路分析的基础学问Q 值与电压值与电压lQ 值的定义:值的定义:称为品质因数称为品质因数称为品质因数称为品质因数lQ 值与电压的关系值与电压的关系即即

21、即即 U UL L=U UC C=QUQU,所以,串联谐振也称为电压谐振。,所以,串联谐振也称为电压谐振。,所以,串联谐振也称为电压谐振。,所以,串联谐振也称为电压谐振。31第一章 电路分析的基础学问串联谐振的利与弊串联谐振的利与弊l无线电技术中,利用电压谐振选择信号无线电技术中,利用电压谐振选择信号(如收音如收音机、电视机机、电视机)l电力系统中,避开谐振的产生,防止造成设备电力系统中,避开谐振的产生,防止造成设备的损坏。的损坏。32第一章 电路分析的基础学问Q 值与通频带值与通频带RLCRLC串联网络串联网络串联网络串联网络称为通频带称为通频带称为通频带称为通频带令:令:令:令:即:即:即

22、:即:因为因为因为因为 为正,故为正,故为正,故为正,故:通频带:通频带:通频带:通频带:Q Q与与与与BWBW成反比。成反比。成反比。成反比。33第一章 电路分析的基础学问谐振频率谐振频率谐振频率谐振频率11.6.2 并联谐振并联谐振l并联并联谐振电路谐振电路谐振时谐振时谐振时谐振时 B B=0=0谐振频率为谐振频率为谐振频率为谐振频率为34第一章 电路分析的基础学问并联谐振的特点并联谐振的特点lY最小,最小,Z最大最大Z=R=1/G,I0=UG若若G=0,即相当于开路。,即相当于开路。0 容性。容性。l电路呈阻性电路呈阻性 l相量图相量图 大小相等,方向相反;大小相等,方向相反;可能有:可

23、能有:I L=I CU 35第一章 电路分析的基础学问Q 值与通频带值与通频带lQ 值的定义:值的定义:称为品质因数称为品质因数称为品质因数称为品质因数lQ 值与电流的关系值与电流的关系即即即即 I IL L=I IC C=QIQI,所以,并联谐振也称为电流谐振。所以,并联谐振也称为电流谐振。所以,并联谐振也称为电流谐振。所以,并联谐振也称为电流谐振。lQ 值与通频带值与通频带同理可推得:同理可推得:同理可推得:同理可推得:36第一章 电路分析的基础学问线圈(实际电感)与电容并联谐振线圈(实际电感)与电容并联谐振l谐振频率谐振频率谐振时谐振时谐振时谐振时 B B=0=0,即:,即:,即:,即:

24、解得:解得:解得:解得:当当当当37第一章 电路分析的基础学问lQ 值定义值定义l相量图相量图构成构成电流三角形;电流三角形;R 越小,越有:越小,越有:I L ICl谐振时的阻抗谐振时的阻抗谐振时谐振时 B=0,即:,即:38第一章 电路分析的基础学问例例 1在如图所示电路中,当电源频率在如图所示电路中,当电源频率 由零渐渐增加时,则该电路是由零渐渐增加时,则该电路是_。(A)先串谐后并谐;先串谐后并谐;(B)先并谐后串谐;先并谐后串谐;(C)同时达两种谐振。同时达两种谐振。B39第一章 电路分析的基础学问课外作业课外作业 PP.144-147 10-8,10-9,10-12END40第一章 电路分析的基础学问

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 商业计划书

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁