《2022年中考数学压轴题5 .pdf》由会员分享,可在线阅读,更多相关《2022年中考数学压轴题5 .pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2010 年中考数学压轴题10 题精选【1】如图,点P是双曲线11(00)kykxx,上一动点,过点P 作 x 轴、y 轴的垂线,分别交x轴、y 轴于 A、B两点,交双曲线y=xk2(0k2|k1|)于 E、F 两点(1)图 1 中,四边形 PEOF的面积 S1=(用含 k1、k2的式子表示);(2)图 2中,设 P 点坐标为(4,3)判断 EF与 AB的位置关系,并证明你的结论;记2PEFOEFSSS,S2是否有最小值?若有,求出其最小值;若没有,请说明理由。【2】一开口向上的抛物线与x 轴交于 A(m2,0),B(m2,0)两点,记抛物线顶点为C,且 ACBC(1)若 m 为常数,求抛物线
2、的解析式;(2)若 m 为小于 0 的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y 轴正半轴于D 点,问是否存在实数m,使得 BCD为等腰三角形?若存在,求出m 的值;若不存在,请说明理由【3】如图,在梯形ABCD中,24ADBCADBC,点M是AD的中点,MBC是等边三角形(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且60MPQ保持不变 设PCxMQy,求y与x的函数关系式;(3)在(2)中:当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点BDACOxy为顶点的四边形是平行四边形?并指出符合条件的平行四
3、边形的个数;当y取最小值时,判断PQC的形状,并说明理由【4】如图,已知ABC为直角三角形,90ACB,ACBC,点A、C在x轴上,点B坐标为(3,m)(0m),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:()FC ACEC为定值【5】如图 12,直线4xy与两坐标轴分别相交于A、B点,点 M 是线段 AB 上任意一点(A、B 两点除外),过 M 分别作 MCOA于点 C,MDOB于 D(1)当点 M 在 AB
4、 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;(2)当点 M 运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40aa(,正方形OCMD 与 AOB 重叠部分的面积为S试求 S 与a的函数关系式并画出该函数的图象A D C B P M Q 60yxQPFEDCBAO文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E
5、9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X
6、1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:C
7、D2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG
8、3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA
9、5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码
10、:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4
11、HG3E9S2S10H4 ZA5X1C1V6V8文档编码:CD2J4K3U6H4 HG3E9S2S10H4 ZA5X1C1V6V8【6】如图 11,在 ABC中,C=90,BC=8,AC=6,另有一直角梯形DEFH(HF DE,HDE=90)的底边DE落在 CB上,腰 DH 落在 CA上,且 DE=4,DEF=CBA,AHAC=2 3(1)延长 HF 交 AB于 G,求 AHG的面积.(2)操作:固定ABC,将直角梯形DEFH以每秒 1 个单位的速度沿CB方向向右移动,直到点D 与点 B重合时停止,设运动的时间为t 秒,运动后的直角梯形为 DEFH(如图12).探究 1:在运动中,四边形 CD
12、HH 能否为正方形?若能,请求出此时t 的值;若不能,请说明理由.探究 2:在运动过程中,ABC与直角梯形DEFH重叠部分的面积为y,求 y 与 t 的函数关系.【7】阅读材料:如图 12-1,过ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫ABC的“水平宽”(a),中间的这条直线在ABC内部线段的长度叫 ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:ahSABC21,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图 12-2,抛物线顶点坐标为点C(1,4),交 x 轴于点 A(3,0),交 y 轴于点 B.(1)求抛物线和直线AB的解
13、析式;(2)点 P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当 P点运动到顶点C时,求 CAB的铅垂高 CD及CABS;(3)是否存在一点P,使 SPAB=89SCAB,若存在,求出 P点的坐标;若不存在,请说明理由.B x y M C D O A 图 12(1)B x y O A 图 12(2)B x y O A 图 12(3)x C O y A B D 1 1 文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V
14、2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9
15、文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z
16、4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L
17、3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8
18、L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S
19、8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z
20、7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9【8】如图,已知抛物线与x交于 A(1,0)、E(3,0)两点,与y轴交于点 B(0,3)。(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)AOB 与 DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。【9】已知二次函数22aaxxy。(1)求证:不论a 为何实数,此函数图象与x 轴总有两个交点。(2)设 a0,当此函数图象与x 轴的两个交点的距离为13时,求出此二次函数的解析式。(3)若此二次函数图象与x 轴交于 A、B 两点,在函数图
21、象上是否存在点P,使得 PAB的面积为2133,若存在求出P 点坐标,若不存在请说明理由。【10】如图,已知射线DE与x轴和y轴分别交于点(3 0)D,和点(0 4)E,动点C从点(5 0)M,出发,以 1 个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P 从点 D 出发,也以1 个单位长度/秒的速度沿射线DE 的方向作匀速运动设运动时间为t秒(1)请用含t的代数式分别表示出点C与点 P的坐标;(2)以点 C 为圆心、12t个单位长度为半径的C与x轴交于 A、B 两点(点A 在点 B 的左侧),连接 PA、PB当C与射线 DE有公共点时,求t的取值范围;当PAB为等腰三角形时,求t的
22、值O x y E P D AB MC 文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7
23、I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT
24、3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY
25、5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8
26、P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:
27、CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9文档编码:CT3J6S8Z4T10 HY5K2Z7L3V2 ZI8P7I7Y8L9