精品试卷京改版九年级数学下册第二十三章-图形的变换必考点解析练习题(无超纲).docx

上传人:可****阿 文档编号:32634411 上传时间:2022-08-09 格式:DOCX 页数:26 大小:591.94KB
返回 下载 相关 举报
精品试卷京改版九年级数学下册第二十三章-图形的变换必考点解析练习题(无超纲).docx_第1页
第1页 / 共26页
精品试卷京改版九年级数学下册第二十三章-图形的变换必考点解析练习题(无超纲).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《精品试卷京改版九年级数学下册第二十三章-图形的变换必考点解析练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试卷京改版九年级数学下册第二十三章-图形的变换必考点解析练习题(无超纲).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十三章 图形的变换必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是()A(-1,-2)B(-2,1)C

2、(2,1)D(2,-1)2、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )A第一象限B第二象限C第三象限D第四象限3、如图,线段两个端点的坐标分别为,以原点为位似中心,在第一象限内将线段缩小为原来的后得到线段,则端点的坐标为( )ABCD4、如图,在平面直角坐标系中,将以原点O为位似中心放大后得到,若,则与的面积的比是( )ABCD5、如图,ABC中,C=84,CBA=56,将ABC挠点B旋转到DBE,使得DE/AB,则EBC的度数为( )A28B40C42D506、下列各组图形中,能够通过平移得到的一组是( )ABCD7、如图,把矩形纸片沿对角线折叠,若重叠部

3、分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是轴对称图形D折叠后和相等8、如图,边长为1的正方形ABCD绕点A逆时针旋转45后,得到正方形ABCD,边BC与DC交于点O,则DOB的度数为()A125B130C135D1409、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)10、如图,在中,垂足为D,与关于直线对称,点B的对称点是点E,则的度数为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4

4、分,共计20分)1、如图,在平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B在x轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_2、如图,四边形ABCD中,ADBC,直线l是它的对称轴,B=53,则D的大小为_3、如图,正方形ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF,给出下列结论:AGD110.5;2tanAED2;SAGDSOG

5、D;四边形AEFG是菱形;BFOF;SOGF1,则正方形ABCD的面积是128,其中正确的是_(只填写序号)4、如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,OPn(n为正整数),则点P2020的坐标是_5、如图,长方形ABCD中,E为BC上一点,且,F为AB边上的一个动点,连接EF,将EF绕着点E顺时针旋转30到EG的位置,连接FG和CG,则CG的最小值为_三、解答题(5小题,每小题10分,

6、共计50分)1、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC(1)作出关于x轴对称的;(2)以坐标原点为位似中心在图中的网格中作出的位似图形,使与的位似比为1:2;(3)若的面积为3.5平方单位,求出的面积2、如图,三角形的项点坐标分别为,(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90后的,并写出点的坐标3、在平面直角坐标系xOy中,直线l:xm表示经过点(m,0),且平行于y轴的直线给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点例如,如图,点M(3,2

7、)的一次反射点为(3,2),点M关于直线l:x1的二次反射点为(1,2)已知点A(1,1),B(3,1),C(3,3),D(1,1)(1)点A的一次反射点为 ,点A关于直线:x2的二次反射点为 ;(2)点B是点A关于直线:xa的二次反射点,则a的值为 ;(3)设点A,B,C关于直线:xt的二次反射点分别为,若与BCD无公共点,求t的取值范围4、在平面直角坐标系中,的顶点坐标分别为(1)关于y轴的对称图形为画出,(点A与点对应,点B与点对应,点C与点对应);(2)连接,在的下方画出以为底的等腰直角,并直接写出点P的坐标5、在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,AB

8、C的三个顶点都在格点上(1)在图中画出将ABC绕点C按逆时针方向旋转90后得到的A1B1C1;(2)在(1)所画的图中,计算线段AC在旋转过程中扫过的图形面积(结果保留)-参考答案-一、单选题1、B【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是故选B【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析2、B【分析】设内任一点A(a,b)在第三象限内,可得a0,b0,关于x轴对称后的点B(-a,b),则a0,b0,然后

9、判定象限即可【详解】解:设内任一点A(a,b)在第三象限内,a0,b0,点A关于x轴对称后的点B(a,-b),b0,点B(a,-b)所在的象限是第二象限,即在第二象限故选:B【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键3、A【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标【详解】解:线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A

10、点的一半,端点C的坐标为:(3,3)故选:A【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键4、D【分析】根据图形可知位似比为,根据相似比等于位似比,面积比等于相似比的平方,即可求得答案【详解】解:,则与的位似比为,与的相似比为则与的面积比为故选D【点睛】本题考查了位似图形的性质,求得位似比是解题的关键5、B【分析】先求出A=40,再根据旋转和平行得出DBA=40,进而可求EBC的度数【详解】解:ABC中,C=84,CBA=56,A=180-C -CBA=40,由旋转可知,D=A=40,EBC=DBA,DE/AB,D=DBA=40,EBC=DBA=40,

11、故选:B【点睛】本题考查了旋转的性质和平行线的性质,解题关键是熟记旋转的性质,准确识图,正确进行推导计算6、B【分析】根据平移的性质对各选项进行判断【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键7、D【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是成立的,问题即可解决【详解】解:由题意得:BCDBFD,DC=DF,C=F=90;CBD=FBD,又四边形ABC

12、D为矩形,A=F=90,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答8、C【分析】连接BC,根据题意得B在对角线AC上,得BCO=45,由旋转的性质证出OBC是直角,得,即可得出答案【详解】解:连接BC,如

13、图所示,四边形ABCD是正方形,AC平分BAD,旋转角BAB=45,BAC=45,B在对角线AC上,BCO=45,由旋转的性质得:,AB=AB=1, 故选:C【点睛】本题考查了正方形的性质、旋转的性质等知识;熟练掌握正方形的性质和旋转的性质是解题的关键9、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考

14、查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小10、A【分析】求出C,AED,利用三角形的外角的性质求解即可【详解】解:B=50,ABC=90,C=90-50=40,ADBC,ADB与ADE关于直线AD对称,AED=B=50,AED=C+CAE,CAE=50-40=10,故选:A【点睛】本题考查轴对称,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型二、填空

15、题1、【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为:【点睛】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键2、127【分析】根据轴对称性质得出C=B=53,根据平行线性质得出C+D=180即可【详解】解:直线l是四边形ABCD的对称轴,B=53,C=B=53,ADBC,C+D=180,D=180-53=127故答案为:127【点睛】本题考查轴对称性质,平行线性质,求一个角的的补角,掌

16、握轴对称性质,平行线性质,求一个角的的补角3、【分析】由四边形ABCD是正方形,可得GADADO45,又由折叠的性质,可求得ADG的度数,从而求得AGD;利用GAD与ADG度数求得AED度数可得;证AEGFEG得AGFG,由FGOG即可得;由折叠的性质与平行线的性质,易得AEG是等腰三角形,由AEFE、AGFG即可得证;设OFa,先求得EFG45,从而知BFEFGFOF;由SOGF1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论【详解】解:四边形ABCD是正方形,GADADO45,由折叠的性质可得:ADGADO22.5,AGD180GADADG112.5,故错误AED1

17、80EADADE67.5,tanAED1,则2tanAED2,故错误;由折叠的性质可得:AEEF,EFDEAD90,在AEG和FEG中,AEGFEG(SAS),AGFG,在RtGOF中,AGFGGO,SAGDSOGD,故错误;AGEGADADG67.5AED,AEAG,又AEFE、AGFG,AEEFGFAG,四边形AEFG是菱形,故正确;设OFa,四边形AEFG是菱形,且AED67.5,FEGFGE67.5,EFG45,又EFO90,GFO45,GFEFa,EFO90,EBF45,BFEFGFa,即BFOF,故正确;SOGF1,OG21,即a21,则a22,BFEFa,且BFE90,BE2a,

18、又AEEFa,ABAEBE2aa(2)a,则正方形ABCD的面积是(2)2a2(64)2128,故正确;故答案为:【点睛】本题考查了正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用4、(0,)【分析】根据题意得出OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=8=23,OP5=16=24,OPn=2n-1,再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上,进而得出答案【详解】解:点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45,再将其长度伸长为OP1的

19、2倍,得到线段OP2;OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=23,OP5=24,OPn=2n-1,由题意可得出线段每旋转8次旋转一周,20208=2524,点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,点P2020的坐标是(0,)故答案为:(0,)【点睛】此题主要考查了点的变化规律,根据题意得出点P2020的坐标与点P4的坐标在同一直线上是解题关键5、#【分析】根据题意将线段BE绕点E顺时针旋转30得到线段ET,连接GT,过E作,垂足为J,进而结合全等三角形判定可得当CGTG时,CG的值最小,依据矩形的性质和含30的直角三角形进行分析计算即可得出答

20、案.【详解】解:如图,将线段BE绕点E顺时针旋转30得到线段ET,连接GT,过E作,垂足为J,四边形ABCD是矩形,AB=CD=6,B=BCD=90,BET=FEG=30,BEF=TEG,在EBF和TEG中,EBFETG(SAS),B=ETG=90,点G的在射线TG上运动,当CGTG时,CG的值最小,EJG=ETG=JGT=90,四边形ETGJ是矩形,JET=90,GJ=TE=BE=2,BET =30,JEC=180-JET-BET=60,,CG=CJ+GJ=.CG的最小值为.故答案为:.【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用

21、辅助线,构造全等三角形解决问题三、解答题1、(1)见解析;(2)见解析;(3)14平方单位【分析】(1)根据轴对称性质即可画出ABC关于x轴对称的;(2)根据位似图形的性质即可画出以点O为位似中心的位似图形,与的位似比为1:2;(3)利用相似三角形的性质计算即可【详解】解:(1)如图,即为所求作;(2)如图,即为所求作;(3)与的位似比为1:2,的面积为3.5平方单位,即的面积为3.5平方单位,的面积为:2=43.5=14平方单位【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、(1)图见解析,;(2)图见解析,【分析】(1)写出,关于原点对

22、称的点,连接即可;(2)连接OC,OB,根据旋转的90可得,即可;【详解】(1),关于原点对称的点,作图如下;(2)连接OC,OB,根据旋转的90可得,其中点C2的坐标是(3,-1),作图如下:【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键3、(1)(1,1);(5,1);(2)-2;(3)2或1【分析】(1)根据一次反射点和二次反射点的定义求解即可;(2)根据二次反射点的意义求解即可;(3)根据题意得,分0和0时与BCD无公共点,求出t的取值范围即可【详解】解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),点A关于

23、直线:x2的二次反射点为(5,1)故答案为: (1,1);(5,1) (2)A(1,1),B(3,1),且点B是点A关于直线:xa的二次反射点, 解得, 故答案为: 2 (3)由题意得,(1,1),(3,1),(3,3),点D(1,1)在线段上当0时,只需关于直线的对称点在点B左侧即可,如图1当与点B重合时,2,当2时,与BCD无公共点当0时,只需点D关于直线x的二次反射点在点D右侧即可,如图2,当与点D重合时,1,当1时,与BCD无公共点综上,若与BCD无公共点,的取值范围是2,或1【点睛】本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解4

24、、(1)作图见解析;(2)作图见解析,【分析】(1)分别求出A,B,C关于y轴对称的点,连接即可;(2)根据轴对称的性质计算即可;【详解】(1)由题可知,A,B,C关于y轴对称的点为,作图如下;(2)根据题意可得:,设与y轴交于点M,则是等腰直角三角形,;【点睛】本题主要考查了轴对称的性质应用和等腰直角三角形的性质,准确作图计算是解题的关键5、(1)见详解;(2)【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可(2)由勾股定理求出AC的长度,然后利用扇形的面积公式,即可求出答案【详解】解:(1)如图所示:(2)由勾股定理,则,线段AC在旋转过程中扫过的图形面积为:;【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了扇形的面积公式,勾股定理

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁