《2021-2022学年北师大版八年级数学下册第五章分式与分式方程同步测试试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版八年级数学下册第五章分式与分式方程同步测试试卷(含答案解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用换元法解分式方程+10时,如果设y,那么原方程可以变形为整式方程()Ay23y10By2+3y10Cy2
2、y10Dy2+y102、下列等式成立的是()ABCD3、若分式中的x和y都扩大2倍,那么分式的值()A扩大2倍B不变C缩小2倍D扩大4倍4、如果把分式中的x和y都扩大3倍,那么分式的值()A扩大到原来的3倍B扩大到原来的9倍C缩小到原来的D缩小到原来的5、在,中,分式的个数是()A1B2C3D46、2021年10月16日,我国神舟十三号载人飞船与天和核心舱首次成功实现“径向对接”,对接过程的控制信息通过微波传递微波理论上可以在0.000003秒内接收到相距约1千米的信息.将数字0.000003用科学记数法表示应为()ABCD7、式子中x的取值范围是( )Ax2Bx2Cx2Dx2且x28、如果分
3、式的值等于0,那么x的值是()ABCD9、PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A2.5105B2.5106C25107D1.210810、飞沫一般认为是直径大于5微米(5微米0.000005米)的含水颗粒飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离将0.000005用科学记数法表示应为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若分式的值为零,则x的值为 _2、在中,的取值范围为
4、_3、要使有意义,则x应满足 _4、已知,令,即当n为大于1的奇数时,:当n为大于1的偶数时,则_(用含a的代数式表示),的值为_5、计算:()3_;(9x2y6xy2+3xy)3xy_三、解答题(5小题,每小题10分,共计50分)1、(1)计算: (2)计算:(3)计算: (4)因式分解:2、先化简,再求值:,其中3、计算:(1)(2)(3)(4)4、化简:5、(1)解方程:(2)先化简,再求值:的值,其中-参考答案-一、单选题1、D【分析】根据换元法,把换成y,然后整理即可得解【详解】解:y,原方程化为整理得:y2+y10故选D【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是
5、构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理2、C【分析】直接根据分式的性质进行判断即可【详解】解:A. ,故选项A不符合题意;B,故选项B不符合题意;C. ,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题主要考查了分式性质的应用,熟练掌握分式性质是解答本题的关键3、A【分析】根据题意及分式的性质可直接进行求解【详解】解:由题意得:,分式的值比原分式扩大了2倍;故选A【点睛】本题主要考查分式的性质,熟练掌握分式的性质是解题的关键4、A【分析】x和y都扩大到原来的3倍就是分别变成
6、原来的3倍,变成3x和3y用3x和3y代替式子中的x和y,根据得到的式子与原来的式子的关系进行判断即可【详解】解:用3x和3y代替式子中的x和y得:分式的值扩大到原来的3倍,故选A【点睛】本题考查分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论5、C【分析】根据分式的定义逐个分析判断即可【详解】解:在,中,分式有,共3个,是整式故选:C【点睛】本题考查了分式的判断,掌握分式的定义是解题的关键一般地,如果、(不等于零)表示两个整式,且中含有字母,那么式子就叫做分式,其中称为分子,称为分母6、B【分析】绝对值小于1的
7、负数也可以利用科学记数法表示,一般形式为a10-n,其中110,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】故选:B【点睛】本题考查了科学记数法,科学记数法一般形式为a10n,其中1-3【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案【详解】解:由题意得:2x+60,解得:x-3,故答案为:x-3【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键3、且【分析】根据二次根式的被开方数的非负性和分式的分母不能为0即可得【详解】解:由题意得:,解得且,故答案
8、为:且【点睛】本题考查了二次根式和分式,熟练掌握二次根式和分式有意义的条件是解题关键4、a 1011 【分析】先分别计算再归纳总结规律, 这一列数6个数循环,从而可得第一空的答案,再计算从而可得第二空的答案.【详解】解: 总结可得: 这一列数6个数循环,而 =-3337=-1011, 故答案为:【点睛】本题考查的是数的规律探究,同时考查分式的运算,掌握“从具体到一般的探究方法再总结规律并运用规律解决问题”是解本题的关键.5、-27x38y6 3x2y+1 【分析】根据分式的乘方法则和分式的约分方法计算即可【详解】解:()3;(9x2y6xy2+3xy)3xy=3x2y+1;故答案为:;3x2y
9、+1【点睛】本题考查了分式的乘方和分式的约分,分式的乘方是把分子、分母分别乘方,分式的约分是把分式分子、分母中除1以外的公因式约去三、解答题1、(1)(2)(3)(4)y(3x-y)(3x-y)【分析】(1)应用分式的运算法则计算即可(2)同(1)应用分式的运算法则计算即可(3)根据二次根式的混合运算法则计算即可(4)运用提取公因式和完全平方公式即可因式分解【详解】(1)(2)(3)(4)9x2y-6xy2+y3=y(9x2-6xy+y2)=y(3x-y)2y(3x-y)(3x-y)【点睛】本题考查了分式的运算、二次根式的混合运算和因式分解,做分式混合运算时,要注意运算顺序,乘除法是同级运算,
10、要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序;二次根式的混合运算依旧遵循整式运算的运算法则,但结果应为最简二次根式形式;因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解2、;【分析】先将除法转化为乘法,同时将分子分母因式分解,进而根据分式的性质化简,再将x=3代入化简后的结果【详解】解:原式,当时原式【点睛】本题考查了分式的化简求值,掌握分式的性质与因式分解是解题的关键3、(1)(2)(3)(4)【分析】(1)根据二次根式的乘法运算可进行求解;(2)根据分式的加法运算可进行求解;(3)利用平方差公式进行整式的运算即可;(4)先化简,然后再进行二次
11、根式的运算即可(1)解:;(2)解:;(3)解:原式=;(4)解:原式=【点睛】本题主要考查二次根式的混合运算、分式的加减运算及整式的运算,熟练掌握各个计算法则是解题的关键4、-2【分析】根据分式的乘除运算法则计算即可【详解】解:原式【点睛】本题考查分式的乘除运算,熟练掌握该知识点是解题关键5、(1)原方程无解;(2),【分析】(1)先去分母,然后再进行求解方程即可;(2)先把分子分母进行因式分解,然后再进行分式的除法运算,最后代值求解即可【详解】解:(1)去分母得:,去括号得:,移项、合并同类项得:,解得:,经检验:使分母为0,分式无意义,原方程无解;(2)=;把代入得:原式=【点睛】本题主要考查分式的化简求值及分式方程的解法,熟练掌握分式的化简求值及分式方程的解法是解题的关键