2021-2022学年度北师大版八年级数学下册第五章分式与分式方程同步测试试题(含答案解析).docx

上传人:可****阿 文档编号:30667804 上传时间:2022-08-06 格式:DOCX 页数:18 大小:327.65KB
返回 下载 相关 举报
2021-2022学年度北师大版八年级数学下册第五章分式与分式方程同步测试试题(含答案解析).docx_第1页
第1页 / 共18页
2021-2022学年度北师大版八年级数学下册第五章分式与分式方程同步测试试题(含答案解析).docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2021-2022学年度北师大版八年级数学下册第五章分式与分式方程同步测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第五章分式与分式方程同步测试试题(含答案解析).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第五章分式与分式方程同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列代数式中:,共有分式( )A2个B3个C4个D5个2、关于x的方程有增根,则m的值是( )A2B1C0

2、D-13、雾是由悬浮在大气中微小液滴构成的气溶胶,雾滴的直径多为0.000004m0.00003m其中,0.000004用科学记数法表示为( )A4106B4107C410-6D410-74、关于x的方程的解为整数且关于x的不等式组的解集为则满足条件的所有整数a值之和为( )A5B3C4D05、下列等式成立的是()ABCD6、华华同学借了一本书,共280页,要在1周借期内读完当他读了一半时,发现平均每天要多读21页才能在借期内读完他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读页,则下面所列方程中,正确的是( )ABCD7、已知:,则的值是()ABC5D58、2021年6月,怀柔区

3、政府和内蒙古自治区四子王旗政府签订了2021年东西部协作协议,在乡村振兴、产业合作、消费帮扶、就业帮扶、教育和健康帮扶方面,按计划推动工作落实在产业合作过程中,怀柔区为四子王旗提供设备和技术支持运送设备使用大货车,技术人员乘坐面包车已知怀柔区与四子王旗相距600千米,若面包车的速度是大货车的1.2倍,两车同时从怀柔区出发,大货车到达四子王旗比面包车多用小时求大货车和面包车的速度设大货车速度为x 千米/小时,下面是四位同学所列的方程:国国:; 佳佳:;富富:;强强:其中,正确的序号是( )ABCD9、若代数式运算结果为x,则在“”处的运算符号应该是( )A除号“”B除号“”或减号“-”C减号“-

4、”D乘号“”或减号“-”10、2021年10月16日,我国神舟十三号载人飞船与天和核心舱首次成功实现“径向对接”,对接过程的控制信息通过微波传递微波理论上可以在0.000003秒内接收到相距约1千米的信息.将数字0.000003用科学记数法表示应为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于x的分式方程无解,则m的值为 _2、计算下列各题:(1)|34|1_;(2)_;(3)30_;(4)_3、若分式方程的无解,则_4、如果分式的值为0,则x的值是_5、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘

5、中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _只青蛙三、解答题(5小题,每小题10分,共计50分)1、观察下面等式:;根据你观察到的规律,解决下列问题:(1)写出第n个等式,并证明;(2)计算:2、解分式方程:3、一粥一饭当思来之不易,半丝半缕恒念物力维艰开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%求苹果每千克的价格4、阅读材料:在处理分数和

6、分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(真分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效将分式分离常数可类比假分数变形带分数的方法进行,如:,这样,分式就拆分成一个分式与一个整式的和的形式根据以上阅读材料,解答下列问题:(1)若x为整数,为负整数,可求得_;(2)利用分离常数法,求分式的取值范围;(3)若分式拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:(整式部分对应等于,真分式部分对应等于)用含x的式子

7、表示出mn;随着x的变化,有无最小值?如有,最小值为多少?5、先化简,再求值,其中-参考答案-一、单选题1、B【分析】根据分式的定义,分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出正确答案【详解】解:在,中,是分式的有,共3个;故选:B【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数熟练掌握运用这个区别是解题关键2、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,最简公分母x1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x1),得:m1x0,方程有增根,最简

8、公分母x1=0,即增根是x=1,把x=1代入整式方程,得m=2故选A【点睛】考查了分式方程的增根,解决增根问题的步骤:确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值3、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000004=410-6故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、B【分析】(1)先解分式方程得,由于解是

9、整数,故可推出的值,解不等式,由于解集为,即可确定的可能值,相加即可得出答案【详解】解分式方程得:,为整数,且,可为,-3,由得:,由得:,解集为,解得:,整数可为,故选:B【点睛】本题考查解分式方程和一元一次不等式组,掌握求解的步骤是解题的关键5、C【分析】直接根据分式的性质进行判断即可【详解】解:A. ,故选项A不符合题意;B,故选项B不符合题意;C. ,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题主要考查了分式性质的应用,熟练掌握分式性质是解答本题的关键6、C【分析】根据相等关系:读前一半所用的天数+读后一半所用的天数=7,即可列出方程得到答案【详解】读前一半所用的天

10、数为:天,读后一半所用的天数为:天根据题意得:故选:C【点睛】本题考查了分式方程的应用,关键是理解题意,找到等量关系并列出方程7、D【分析】首先分式方程去分母化为整式方程,求出(ba)的值,把(ba)看作一个整体代入分式约分即可【详解】解:,baab,5;故选:D【点睛】本题考查了分式的加减法、分式的值,熟练掌握这一类型的解题方法,首先分式方程去分母化为整式方程,把(b-a)看作一个整体代入所求分式约分是解题关键8、C【分析】根据题意设大货车速度为x千米/小时,则面包车的速度为1.2x千米/小时,总路程均为600千米,由路程、速度、时间之间的关系及大货车到达四子王旗比面包车多用小时,列出方程即

11、可得【详解】解:设大货车速度为x千米/小时,则面包车的速度为1.2x千米/小时,总路程均为600千米,根据题意可得:,变形为: ,正确,故选:C【点睛】题目主要考查分式方程的应用,理解题意,熟练运用路程、速度、时间之间的关系是解题关键9、B【分析】分别计算出+、-、时的结果,从而得出答案【详解】解:,故选B【点睛】本题主要考查分式的运算,解题的关键是熟练掌握分式的运算法则10、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10-n,其中110,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】故选:B【点睛】本题

12、考查了科学记数法,科学记数法一般形式为a10n,其中110,确定a和n的值是解题关键二、填空题1、7【分析】根据分式的性质去分母,再把增根x=1代入即可求出m的值【详解】解7+3(x-1)=m关于x的分式方程无解,x=1是方程的增根,把增根x=1代入得m=7故答案为:7【点睛】此题主要考查分式方程的解法,解题的关键是根据分式方程无解得到关于m的方程2、0 3 1 【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得【详解】解:(1)原式,故答案为:0;(2)原式,故答案为:3;(3)原式

13、,故答案为:1;(4)原式,故答案为:【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键3、或【分析】去分母,把分式方程化为整式方程,再分两种情况解答即可.【详解】解:去分母: 整理得: 分式方程的无解,所以当时,即 方程无解,则原方程无解,当时,是原方程的增根,此时 解得: 综上:原方程无解时,或 故答案为:或【点睛】本题考查的是分式方程无解的问题,掌握“分式方程无解包括两种情况:去分母后的整式方程无解与分式方程有增根”是解本题的关键.4、#【分析】分式的值为零时,分子等于零,即【详解】解:由题意知,解得此时分母,符合题意故答案是:【点睛】本题主要考查了

14、分式的值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零5、300【分析】设池塘大约有x只,根据题意,得到,计算即可【详解】设池塘大约有x只,根据题意,得到,解得 x=300,经检验,x=300是原方程的根,故答案为:300【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键三、解答题1、(1),证明见详解(2)【分析】(1)根据题意观察等式总结规律可得第n个等式,进而运用分式的加法运算法则进行计算即可求证;(2)根据题意代入条件所给的等式与总结的规律,进而利用分式的乘法进行运算即可.(1)解:;总结规律可得第n个等式为:,证明如下: .(2)解:【点睛】本题考

15、查分式的规律问题以及分式的化简运算,熟练掌握分式的混合运算法则是解题的关键.2、【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:去括号得:,解得:,检验:当时,最简公分母,原方程的解是【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根3、14元【分析】设苹果每千克的价格为元,则砂糖橘每千克的价格为元根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解【详解】解:设苹果每千克的价格为元,则砂糖橘每千克

16、的价格为元根据题意,得解得经检验:是原分式方程的解,且符合题意,苹果每千克的价格为14元【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键4、(1);(2);(3);当时,有最小值,最小值是27【分析】(1)按照阅读材料方法,把变形即可;(2)用分离常数法,把原式化为,由即可得答案;(3)用分离常数法,把原式化为,根据已知用的代数式表示、;根据已知用的代数式表示,配方即可得答案【详解】(1), 若x为整数,为负整数,则,解得:,故答案是:;(2),;(3),而分式拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:,而,当时,的最小值是27【点睛】本题考查分式的变形、运算,解题的关键是应用分离常数法,把所求分式变形5、,【分析】先进行分式除法运算,再相减,代入数值后求值即可【详解】解:,=,=,=,=;把代入,原式=【点睛】本题考查了分式的化简求值,解题关键是熟练运用分式运算法则进行化简,代入数值后准确计算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁