2021-2022学年人教版初中数学七年级下册-第六章实数定向测评试卷(含答案详解).docx

上传人:可**** 文档编号:57440276 上传时间:2022-11-05 格式:DOCX 页数:15 大小:183.36KB
返回 下载 相关 举报
2021-2022学年人教版初中数学七年级下册-第六章实数定向测评试卷(含答案详解).docx_第1页
第1页 / 共15页
2021-2022学年人教版初中数学七年级下册-第六章实数定向测评试卷(含答案详解).docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2021-2022学年人教版初中数学七年级下册-第六章实数定向测评试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版初中数学七年级下册-第六章实数定向测评试卷(含答案详解).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册 第六章实数定向测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、0.64的平方根是( )A0.8B0.8C0.08D0.082、在实数,0,3.1415926,中,无理数有()A1个B2个C3个D4个3、在下列实数中:无理数有( )A1个B2个C3个D4个4、下列说法正确的是( )A的相反数是B2是4的平方根C是无理数D5、下列判断:10的平方根是;与互为相反数;0.1的算术平方根是0.01;()3a;a2其中正确的有()A1个B2个C3个D4个6、下列等式正确的是(

2、)ABCD7、下列说法中错误的是()A9的算术平方根是3B的平方根是C27的立方根为D平方根等于1的数是18、在实数中,无理数的个数是( )A1B2C3D49、下列各数中是无理数的是( )A0BCD10、下列各数是无理数的是( )AB3.33CD二、填空题(5小题,每小题4分,共计20分)1、比较大小_(填“”,“”或“”)2、设x)表示大于x的最小整数,如3)4,1.2)1,(1)3.9)_(2)下列结论中正确的是_(填写所有正确结论的序号)0)0;x)x的最小值是0;x)x的最大值是1;存在实数x,使x)x0.5成立3、化简_,_4、的平方根是_5、计算:_三、解答题(5小题,每小题10分

3、,共计50分)1、已知a、b互为倒数,c、d互为相反数,求(cd)21的值2、计算:3、一个底为正方形的水池的容积是486m3,池深1.5m,求这个水池的底边长4、解方程:(1)x225; (2)8(x1)31255、计算(1) (2)(3) (4)-参考答案-一、单选题1、B【分析】根据如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可【详解】解:(0.8)2=0.64,0.64的平方根是0.8,故选:B【点睛】本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况2、B【分析】由题意依据无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念

4、,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数进行分析解答即可【详解】解:因为=2,所以在实数,0,3.1415926,中,无理数有,共2个故选:B【点睛】本题主要考查无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数(注意带根号的要开不尽方才是无理数,无限不循环小数为无理数)3、D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,根据定义判断即可【详解】解:无理数有,共4个,故选:D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开

5、不尽的数;以及像0.10100100014、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案【详解】解:A 负数没有平方根,故无意义,A错误;B,故2是4的平方根,B正确;C是有理数,故C错误;D ,故D错误; 故选B【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义5、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错【详解】解:10的平方根是,正确;是相反数,正确;0.1的算术平方根是,故错误;()3a,正确;a2,故错误;正确的是,有3个故选:C【点睛】本题考查了平方根、立方根和算术平方根的概念,一

6、定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根6、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)7、C【分析】根据平方根,算

7、术平方根,立方根的性质,即可求解【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键8、B【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:=2,=2,,无理数只有,共2个故选:B【

8、点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001,等有这样规律的数9、B【分析】根据无理数的意义逐项判断即可求解【详解】解:A、0是整数,是有理数,不合题意;B、是无限不循环小数,是无理数,符合题意;C、是分数,是有理数,不合题意;D、是分数,是有理数,不合题意故选B【点睛】本题考查了无理数的定义,熟知无理数的定义“无限不循环小数叫无理数”是解题的关键10、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C【点睛】本题考查求一个数的立方根,以及无理

9、数的识别,掌握立方根的定义以及无理数的基本定义是解题关键二、填空题1、【解析】【分析】根据实数比较大小的法则,两个负数,绝对值大的反而小,即可解答【详解】,故答案为:【点睛】本题考查了实数的比较大小,熟练掌握两个负数,绝对值大的反而小是解题关键2、-3; 或【解析】【分析】(1)利用题中的新定义判断即可(2)根据题意x)表示大于x的最小整数,结合各项进行判断即可得出答案【详解】(1)表示大于-3.9的最小整数为-3,所以3.9)-3(2)解: 0)=1,故本项错误; x)x0,但是取不到0,故本项错误; x)x1,即最大值为1,故本项正确; 存在实数x,使x)x=0.5成立,例如x=0.5时,

10、故本项正确正确的选项是:;故答案为:【点睛】此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键3、 2 3【解析】【分析】由题意直接根据立方根和算术平方根的性质进行化简即可得出答案.【详解】解:2,3故答案为:2,3【点睛】本题考查立方根和算术平方根的化简,熟练掌握立方根和算术平方根的性质是解题的关键.4、【解析】【分析】根据平方的运算,可得,即可求解【详解】解:,的平方根是,故答案为:【点睛】本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键5、1【解析】【分析】根据算术平方根的计算方法求解即可【详解】解:故答案为:1【点睛】此题考查了求解算术

11、平方根,解题的关键是熟练掌握算术平方根的计算方法三、解答题1、0【解析】【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可【详解】解:根据题意得:ab1,cd0,则(cd)21的值1010【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键2、2【解析】【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算【详解】解:3()+(1)3+12【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.3、这个水池的底边长为18m【解析】【分析】根据“柱

12、体体积=底面积高”列式,解方程即可【详解】解:设水池的底边长为,由题意得解得水池的底边长为正数, x=18答:这个水池的底边长为18m【点睛】本题考查了利用平方根解方程的应用,根据题目条件寻找等量关系,建模列式是解决本题的关键4、(1);(2)【解析】【分析】(1)根据平方根的定义计算即可;(2)根据立方根的定义计算即可;【详解】解:(1)x225x5(2)x1,x【点睛】本题主要考查平方根、立方根,熟练掌握平方根、立方根的定义是解决本题的关键5、 (1)3; (2)-1; (3) ; (4) ;【解析】【分析】(1)先化简各二次根式,再计算即可;(2)先利用平方差公式化简原式,再计算即可;(3)将除法变成乘法再计算即可;(4)先利用乘法分配律化简原式,再计算即可;【详解】(1) =3(2)=-1(3) = (4)=【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握平方根、立方根等知识点的运算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁