2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测试试题.docx

上传人:可**** 文档编号:57438884 上传时间:2022-11-05 格式:DOCX 页数:27 大小:637.46KB
返回 下载 相关 举报
2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测试试题.docx_第1页
第1页 / 共27页
2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测试试题.docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测试试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测试试题.docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点

2、C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D42、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或23、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140,则2的度数为()A25B20C15D104、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A菱形B矩形C正方形D三角形5

3、、如图,菱形OABC在平面直角坐标系中的位置如图所示,AOC45,OA,则点C的坐标为()A(,1)B(1,1)C(1,)D(+1,1)6、下列图中,既是轴对称图形又是中心对称图形的是()ABCD7、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形8、下列图形中,是中心对称图形的是()ABCD9、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC10、下列

4、图形中,不是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_2、一个正多边形的每一个内角比每一个外角的5倍还小60,则这个正多边形的边数为_3、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_4、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB8cm,AD5cm,那么图中阴影部分面积为_cm25、正五边形的一个内角与一个外角的比_三、解答题(5小题,每小题10分,共计50分)1、已知一个多边形的内角和是外角和的2倍,

5、求这个多边形的边数2、如图,AOB是等腰直角三角形(1)若A(4,1),求点B的坐标;(2)ANy轴,垂足为N,BMy轴,垂足为点M,点P是AB的中点,连PM,求PMO度数;(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQAM3、(1)如图1中,A90,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹)(2)已知内角度数的两个三角形如图2、图3所示请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数(3)一个三角形有一内角为48,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为 4、

6、在菱形ABCD中,ABC60,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE若AB2,BE2,请直接写出APE的面积5、如图,点E为矩形ABCD外一点,AE = DE.求证:ABEDCE-参考答案-一、单选题1、C【分析】取

7、线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考

8、查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键2、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相

9、等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用3、D【分析】根据矩形的性质,可得ABD40,DBC50,根据折叠可得DBCDBC50,最后根据2DB CDBA进行计算即可【详解】解:四边形ABCD是矩形,ABC90,CDAB,ABD=140,DBCABC-ABD=50,由折叠可得DB CDBC50,2DB

10、CDBA504010,故选D【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出DBC和DBA的度数4、B【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形【详解】解:如图,、分别是、的中点,四边形是平行四边形,平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键5、B【分析】作CDx轴,根据菱形的性质得到OC=OA=,在RtOCD中,根据勾股定理求出OD的值,即可得到C

11、点的坐标【详解】:作CDx轴于点D,则CDO=90,四边形OABC是菱形,OA=,OC=OA=,又AOC=45,OCD=90-AOC=90-45=45,DOC=OCD,CD=OD,在RtOCD中,OC=,CD2+OD2=OC2,2OD2=OC2=2,OD2=1,OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键6、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,也不是中心对称图形故本选项不合题意;B、是轴对称图形,不是中

12、心对称图形故本选项不合题意;C、不是轴对称图形,是中心对称图形故本选项不合题意;D、既是轴对称图形又是中心对称图形故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合7、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形8、A【分析】把一个图形绕

13、某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.9、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90,正确,故A不符合题意;当ABCD是菱形

14、时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.10、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.二、

15、填空题1、144度【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案【详解】解:四边形的四个外角的度数之比为1:2:3:4,四个外角的度数分别为:360;360;360;360;它最大的内角度数为:故答案为:144【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360,从而进行计算2、9【分析】设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数【详解】设正多边形的外角为x度,则内角为

16、(5x60)度由题意得:解得:则正多边形的边数为:36040=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角3、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可【详解】解:点与点关于原点成中心对称,即,故答案为:9【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数4、10【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积【详解】解:四边形为矩形, , 在与中, 阴影部分的面积

17、最后转化为了的面积,中, 平分, 阴影部分的面积:,故答案为:10【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键5、【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案【详解】解:正五边形的一个内角的度数为,正五边形的一个外角的度数为,正五边形的一个内角与一个外角的比为,故答案为:【点睛】此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键三、解答题1、这个多边形的边数是6【分析】多边形的外角和是360,内角和是它的外角和的2倍,则

18、内角和为2360=720度n边形的内角和可以表示成(n-2)180,设这个多边形的边数是n,即可得到方程,从而求出边数【详解】解:设这个多边形的边数为n,由题意得:(n2)1802360,解得n6,这个多边形的边数是6【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)180,外角和为3602、(1)(1,4);(2)45;(3)见解析【分析】(1)过点A作AEx轴于E,过点B作BFx轴于F,证明OAEBOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);(2)延长MP与AN交于H

19、,证明APHBPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到NHM=NMH=45,即PMO=45;(3)连接OP,AM,取BM中点G,连接GP,则GP是ABM的中位线,AMGP,证明PQOPGB得到OPQ=BPG,再由OPQ+BPQ=90,得到BPG+BPQ=90,即GPQ=90,则PQPG,即PGAM;【详解】解:(1)如图所示,过点A作AEx轴于E,过点B作BFx轴于F,AEO=OFB=90,AOE+OAE=90,又AOB=90,AOE+BO

20、F=90,OAE=BOF,AO=OB,OAEBOF(AAS),OF=AE,BF=OE,点A的坐标为(-4,1),OF=AE=1,BF=OE=4,点B的坐标为(1,4);(2)如图所示,延长MP与AN交于H,AHy轴,BMy轴,BMAN,MBP=HAP,AHP=BMP,点P是AB的中点,AP=BP,APHBPM(AAS),AH=BM,A点坐标为(-4,1),B点坐标为(1,4),AN=4,OM=4,BM=1,ON=1,HN=AN-AH=AN-BM=3,MN=OM-ON=3,HN=MN,NHM=NMH=45,即PMO=45;(3)如图所示,连接OP,AM,取BM中点G,连接GP,GP是ABM的中位

21、线,AMGP,Q是ON的中点,G是BM的中点,ON=BM=1,P是AB中点,AOB是等腰直角三角形,AOB=90,OAB=OBA=45,OPB=90PAO=POA=45,POB=45,NAO+NOA=90,NOA+BON=90,NAO=BON,OAB=POB=45,BAN+NAO=POQ+BON,即BAN=POQ,由(2)得GBP=BAN,GBP=QOP,PQOPGB(SAS),OPQ=BPG,OPQ+BPQ=90,BPG+BPQ=90,即GPQ=90,PQPG,PGAM;【点睛】本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于

22、能够熟练掌握全等三角形的性质与判定条件3、(1)见解析;(2)见解析;(3)108【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,作BC的垂直平分线即可确定点E,连接AE即可;(2)分别以24为底角,可分割出两个等腰三角形;(3)利用图1、2、3中三角形内角之间的关系进行判断【详解】解:(1)如图,作BC的垂直平分线交BC于E,连接AE,则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:当三角形是直角三角形时,肯定可以分割成两个等腰三角形,此时最大角为90;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99;如图3,此时最大角为108综

23、上所述:最大角为108,故答案为:108【点睛】本题主要考查垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质,熟练掌握垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质是解题的关键4、(1)BPCE,CEBC;(2)仍然成立,见解析;(3)31【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明BAPCAE即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明BAPCAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由BCE90,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三

24、角形APE的边长可得结论【详解】解:(1)如图1,连接AC,延长CE交AD于点H,四边形ABCD是菱形,ABBC,ABC60,ABC是等边三角形,ABAC,BAC60;APE是等边三角形,APAE,PAE60,BAPCAE60PAC,BAPCAE(SAS),BPCE;四边形ABCD是菱形,ABPABC30,ABPACE30,ACB60,BCE60+3090,CEBC;故答案为:BPCE,CEBC;(2)(1)中的结论:BPCE,CEAD 仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,菱形ABCD,ABC60,ABC和ACD都是等边三角形,ABAC,BAD120,BAP120+DA

25、P,APE是等边三角形,APAE,PAE60,CAE60+60+DAP120+DAP,BAPCAE,ABPACE(SAS),BPCE,ACEABD30,DCE30,ADC60,DCE+ADC90,CHD90,CEAD;(1)中的结论:BPCE,CEAD 仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EFAP于F,四边形ABCD是菱形,ACBD BD平分ABC,ABC60,AB2,ABO30,AOAB,OBAO3,BD6,由(2)知CEAD,ADBC,CEBC,BE2,BCAB2,CE8,由(2)知BPCE8,DP2,OP5,AP2,APE是等边三角形,SAEP(2)27,如图4中,当点P在DB的延长线上时,同法可得AP2,SAEP(2)231,【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题5、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明【详解】解:四边形ABCD是矩形,在和中, 【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁