《2021-2022学年基础强化京改版八年级数学下册第十五章四边形章节测评试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化京改版八年级数学下册第十五章四边形章节测评试题.docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:
2、1D3:2:3:22、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形3、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形4、下列图标中,既是中心对称图形又是轴对称图形的是( )ABCD5、已知中,CD是斜边AB上的中线,则的度数是( )ABCD6、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB9,AD,则四边形CDFE的面积是()ABCD547、如
3、图,在ABC中,点E,F分别是AB,AC的中点已知B55,则AEF的度数是()A75B60C55D408、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140,则2的度数为()A25B20C15D109、下列图形中,是中心对称图形的是()ABCD10、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平行四边形ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF
4、=2,则BC的长为_2、如图,平面直角坐标系中,有,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为_3、如图,已知ABCD,和的平分线相交于,求的度数_4、正五边形的一个内角与一个外角的比_5、在平行四边形ABCD中,若A=130,则B=_,C=_,D=_三、解答题(5小题,每小题10分,共计50分)1、(1)如图,在中,求的度数(2)已知一个正多边形的内角和比它的外角和的倍多,求这个正多边形每个外角的度数2、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接(1)当点在线段上时,如图,求证:;(2)当点在直线上移动时,位置如图、图所示,线段,与之间又有怎样的数量
5、关系?请直接写出你的猜想,不需证明3、已知:ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BMDN,BM=DN4、如图,四边形ABCD是正方形,BEBF,BEBF,EF与BC交于点G(1)求证:AECF;(2)若ABE62,求GFC+BCF的值5、如图,已知矩形中,点,分别是,上的点,且(1)求证:;(2)若,求:的值-参考答案-一、单选题1、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判
6、定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法2、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形3、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故
7、选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键4、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿
8、一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形5、B【分析】由题意根据三角形的内角和得到A=36,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90,B=54,A=36,CD是斜边AB上的中线,CD=AD,ACD=A=36.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键6、C【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案【详解】如图,过点F作,分别交于M、N,四边形ABCD是矩形,点E是BC的中点,F是AE中点,故选:
9、C【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键7、C【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键8、D【分析】根据矩形的性质,可得ABD40,DBC50,根据折叠可得DBCDBC50,最后根据2DB CDBA进行计算即可【详解】解:四边形ABCD是矩形,ABC90,CDAB,ABD=140,DBCABC-ABD=50,由折叠可得DB CDBC50,2D
10、B CDBA504010,故选D【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出DBC和DBA的度数9、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.10、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再
11、根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键二、填空题1、10或14或10【分析】利用BF平分ABC, CE平分BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可【详解】解: 四边形ABCD是平行四边形,BF平分ABC, CE平分BCD, , 由等角对等边可知:, 情况1:当与
12、相交时,如下图所示:, ,情况2:当与不相交时,如下图所示:,故答案为:10或14【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况2、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标【详解】平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBO,D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),
13、同理可得出D的坐标还有(-3,4)、(3,-4)故答案为:(9,4)、(-3,4)、(3,-4)【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等3、110度【分析】过点E作EHAB,然后由ABCD,可得ABEHCD,然后根据两直线平行内错角相等可得ABE=BEH,CDE=DEH,然后根据周角的定义可求ABE+CDE的度数;再根据角平分线的定义求出EBF+EDF的度数,然后根据四边形的内角和定理即可求BFD的度数【详解】解:过点E作EHAB,如图所示,ABCD,ABEHCD,ABE=BEH,CDE=DEH,BEH+DEH+BED=360,BED=140,BEH
14、+DEH=220,ABE+CDE=220,ABE和CDE的平分线相交于F,EBF+EDF=(ABE+CDE)=110,BFD+BED+EBF+EDF=360,BFD=110故答案为:110【点睛】本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补另外过点E作EHAB,也是解题的关键4、【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案【详解】解:正五边形的一个内角的度数为,正五边形的一个外角的度数为,正五边形的一个内角与一个外角的比为,故答案为:【点睛】此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是
15、解题的关键5、 【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案【详解】解:在平行四边形ABCD中,、是的邻角,是的对角, 故答案为: ,【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键三、解答题1、(1);(2)每一个外角的度数是【分析】(1)根据平行线的性质可得B的度数,再根据等腰三角形的性质可得A的度数;(2)根据n边形的内角和等于外角和的3倍多180,可得方程180(n-2)=3603+180,再解方程即可【详解】解:(1),;设这个多边形的边数为,根据题意得:,解得,即它的边数是,所以每一个外角的度数是【点睛】本题
16、考查了平行线的性质、等腰三角形的性质以及多边形内角和与外角和解题的关键是掌握多边形内角和公式,明确外角和是3602、(1)见解析;(2)图中,图中【分析】(1)在上截取,连接,可先证得,则,进而可证得AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系【详解】解:(1)证明:如图,在上截取,连接四边形是正方形,ECF是等腰直角三角形,在中,;(2)图:,理由如下:如下图,在延长线上截取,连接四边形是正方形, ,ECF是等腰直角三角形, 在中,;图:如图,在DE上截取DF=BE,连接四边形是正方形,ECF是等腰直角三角形,在中, 【点睛
17、】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键3、见解析【分析】连接,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证【详解】如图,连接,四边形ABCD为平行四边形,AO=OC,DO=OBM为AO的中点,N为CO的中点,即MO=ON四边形是平行四边形,BMDN,BM=DN【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键4、(1)证明见解析;(2)73【分析】(1)根据正方
18、形的性质及各角之间的关系可得:,由全等三角形的判定定理可得,再根据其性质即可得证;(2)根据垂直及等腰三角形的性质可得,再由三角形的外角的性质可得,由此计算即可【详解】(1)证明:四边形ABCD是正方形,在和中,;(2)解:BEBF,又,四边形ABCD是正方形,的值为【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键5、(1)见解析;(2)【分析】(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定和性质即可得到结论;(2)由已知条件得到,由,即可得到:的值【详解】(1)四边形是矩形,在与中,;(2),【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键