2021-2022学年京改版七年级数学下册第八章因式分解专项练习试题(无超纲).docx

上传人:可**** 文档编号:57438250 上传时间:2022-11-05 格式:DOCX 页数:16 大小:220.05KB
返回 下载 相关 举报
2021-2022学年京改版七年级数学下册第八章因式分解专项练习试题(无超纲).docx_第1页
第1页 / 共16页
2021-2022学年京改版七年级数学下册第八章因式分解专项练习试题(无超纲).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2021-2022学年京改版七年级数学下册第八章因式分解专项练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版七年级数学下册第八章因式分解专项练习试题(无超纲).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解错误的是( )A3x3y3(xy)Bx24(x2)(x2)Cx26x9(x9)2Dx2x2(x1)(x

2、2)2、运用平方差公式对整式进行因式分解时,公式中的可以是( )ABCD3、下列等式中,从左到右的变形是因式分解的是( )ABCD4、下列各式从左到右的变形是因式分解的是( )Aaxbxc(ab)xcB(ab)(ab)a2b2C(ab)2a22abb2Da25a6(a6)(a1)5、下列多项式因式分解正确的是( )ABCD6、下列各因式分解正确的是( )ABCD7、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( )A勤学B爱科学C我爱理科D我爱科学8、可以被24和31之间某三个整数整除,这三个数是(

3、 )A25,26,27B26,27,28C27,28,29D28,29,309、若,则E是( )ABCD10、下列从左边到右边的变形,属于因式分解的是( )Ax2x6(x2)(x3)Bx22x1x(x2)1Cx2y2(xy)2D(x1)(x1)x21第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:5x45x2_2、因式分解:_3、分解因式:_4、10029929829729629522212_5、分解因式_三、解答题(5小题,每小题10分,共计50分)1、观察下列因式分解的过程:根据上述因式分解的方法,尝试将下列各式进行因式分解:(1);(2)2、已知,求值:

4、(1);(2)3、阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)1+x+x(x+1)=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)2021,则需应用上述方法 次,结果是 (3)分解因式:1+x+x(x+1)+x(x+1)2+x(x+1)n(n为正整数)结果是 4、(1)运用乘法公式计算:;(2)分解因式:5、因式分解: -参考答案-一、单选题1、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可【详解】解:显然对于

5、A,B,D正确,不乖合题意,对于C:右边左边,故C错误,符合题意;故选:C【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键2、C【解析】【分析】运用平方差公式分解因式,后确定a值即可【详解】=,a是2mn,故选C【点睛】本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键3、C【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断【详解】A. ,变形是整式乘法,不是因式分解,故A错误;B. ,右边不是几个因式乘积的形式,故B错误;C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;D. ,变形是整式乘法,不是因式分解,故D错误

6、【点睛】本题考查因式分解的定义,掌握因式分解的定义是解题的关键4、D【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D【点睛】本题考查了分解因式的定义解题的关键是掌握分解因式的定义,即把一个多项式化为几

7、个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式5、D【解析】【分析】根据因式分解的定义,把一个多项式化乘几个因式积的形式可判断A,还能继续因式分解可判断B,因式中不能出现分式可判断C,利用完全平方公式因式分解可判断D【详解】解:A. ,因为括号外还有-5,不是乘积形式,故选项A不正确;B. ,因式分解不彻底,故选项B不正确;C. 因式中出现分式,故选项C不正确;D. 根据完全平方公式因式分解,故选项D正确故选择D【点睛】本题考查因式分解,掌握因式分解的方法与要求,注意因式分解是几个因式乘积,分解彻底不能再分解为止,因式中不能出现分式6、D【解析】【分析】利用提公因式法、公式

8、法逐项进行因式分解即可【详解】解:A、,所以该选项不符合题意;B、,所以该选项不符合题意;C、是整式的乘法,所以该选项不符合题意;D、,所以该选项符合题意;故选:D【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键7、C【解析】【分析】利用平方差公式,将多项式进行因式分解,即可求解【详解】解:、依次对应的字为:科、爱、我、理,其结果呈现的密码信息可能是我爱理科故选:C【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键8、B【解析】【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解:

9、所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.9、C【解析】【分析】观察等式的右边,提取的是,故可把变成,即左边【详解】解:,故选C【点睛】本题主要考查了利用提取公因式法分解因式,解题的关键在于能够熟练掌握提公因式法10、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2x6(x2)(x3)属于因式分解,故A符合题意;x22x1x(x2)1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2y2(xy)2的左右两边不相等,不能

10、分解因式,不是因式分解,故C不符合题意;(x1)(x1)x21是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.二、填空题1、5x2(x1)(x1)【解析】【分析】直接提取公因式5x2,进而利用平方差公式分解因式【详解】解:5x4-5x2=5x2(x2-1)=5x2(x+1)(x-1)故答案为:5x2(x+1)(x-1)【点睛】本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键2、m(m+1)(m1)【解析】【分析】原式提取m,再利用平方差公式分解即可【详解】解:原式m(m

11、212)m(m+1)(m1)故答案为:m(m+1)(m1)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键3、【解析】【分析】首先提公因式3x,然后利用完全平方公式因式分解即可分解【详解】解:故答案为:【点睛】本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键4、5050【解析】【分析】先根据平方差公式进行因式分解,再计算加法,即可求解【详解】解: 1002-992 + 982-972 + 962-952 +22-12=(100 + 99)(100-99)+(98 + 97)(98-97)+(2+1)(2-1)= 100+ 9

12、9+98+ 97+2+1 = 5050故答案为:5050【点睛】本题主要考查了平方差公式的应用,熟练掌握平方差公式 的特征是解题的关键5、【解析】【分析】直接利用提公因式法分解因式即可【详解】解:故答案为:【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等三、解答题1、(1);(2)【解析】【分析】(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;(2)根据题中的方法分解因式即可【详解】解:(1);(2)【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解2、(1);

13、(2)【解析】【分析】(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;(2)由可得:由,可得再把分解因式即可得到答案.【详解】解:(1) , 则 (2) , 【点睛】本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.3、(1)提公因式法;2;(2)2021;(x+1)2022;(3)(1+x)n+1【解析】【分析】(1)直接利用已知解题方法分析得出答案;(2)结合(1)中解题方法得出答案;(3)结合(1)中解题方法得出答案【详解】解:(1)上述分解因式的方法是提公因式法,共应用了2次;故答案为

14、:提公因式法; 2;(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)2021,则需应用上述方法2021次,结果是(x+1)2022;故答案为:2021;(x+1)2022;(3)1+x+x(x+1)+x(x+1)2+x(x+1)n=(1+x)n+1故答案为:(1+x)n+1【点睛】此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键4、(1);(2)【解析】【分析】(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可【详解】解:(1)=;(2)=【点睛】本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键5、;【解析】【分析】(1)原式先提取公因式,再运用平方差公式进行因式分解即可;(2)原式先提取公因式,再运用平方差公式进行因式分解即可【详解】解:= = =【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁