2021-2022学年京改版七年级数学下册第八章因式分解同步训练试题(无超纲).docx

上传人:可****阿 文档编号:30705025 上传时间:2022-08-06 格式:DOCX 页数:15 大小:182.32KB
返回 下载 相关 举报
2021-2022学年京改版七年级数学下册第八章因式分解同步训练试题(无超纲).docx_第1页
第1页 / 共15页
2021-2022学年京改版七年级数学下册第八章因式分解同步训练试题(无超纲).docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2021-2022学年京改版七年级数学下册第八章因式分解同步训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版七年级数学下册第八章因式分解同步训练试题(无超纲).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不论x,y取何实数,代数式x24xy26y13总是( )A非负数B正数C负数D非正数2、已知x,y满足,则的值为(

2、 )A5B4C5D253、下列各式从左至右是因式分解的是( )ABCD4、下列各式从左到右进行因式分解正确的是()A4a24a+14a(a1)+1Bx22x+1(x1)2Cx2+y2(x+y)2Dx24y(x+4y)(x4y)5、下列各式能用完全平方公式进行因式分解的是( )A9x2-6x+1Bx2+x+1Cx2+2x-1Dx2-96、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A2B3C4D57、下列多项式:(1)a2b2;(2)x2y2;(3)m2n2;(4)b2a2;(5)a64,能用平方差公式分解的因式有( )A2个B3个C4个D5个8、多项式与的公因式

3、是( )ABCD9、下列因式分解正确的是( )ABCD10、若,则E是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:_2、若,那么xy_3、分解因式:12a2b9ac_4、将4a28ab+4b2因式分解后的结果为_5、因式分解:_;_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:(x+2)(4x1)(2x1)2;(2)因式分解:a3b2a2b2+ab32、分解因式:a3a2b4a+4b3、仔细阅读下面例题,解答问题:例题:已知:二次三项式x24x+m有一个因式是(x+3),求另一个因式以及m的值解:设另一个因式为(x+n),得x

4、24x+m(x+3)(x+n),则x24x+mx2+(n+3)x+3n解得:n7,m21另一个因式为(x7),m的值为21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3xk有一个因式是(x5),求另一个因式以及k的值4、因式分解:5、分解因式:-参考答案-一、单选题1、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x24xy26y13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.2、A【解析】【分析】根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.【详解】解:.故选:A.【

5、点睛】本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.3、A【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解4、B【解析】【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻

6、底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a24a+1,故该选项不符合题意;B. x22x+1(x1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x24y(x+4y)(x4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键5、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,

7、故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键6、C【解析】【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因

8、式分解7、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2b2不能用平方差公式分解因式,故(1)不符合题意;x2y2能用平方差公式分解因式,故(2)符合题意;m2n2能用平方差公式分解因式,故(3)符合题意;b2a2不能用平方差公式分解因式,故(4)不符合题意;a64能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.8、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得【详解】解:,则多项式与的公因式是,故选:B【

9、点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键9、D【解析】【分析】各项分解得到结果,即可作出判断【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键10、C【解析】【分析】观察等式的右边,提取的是,故可把变成,即左边【详解】解:,故选C【点睛】本题主要考查了利用提取公因式法分解因式,解题的关键在于能够熟练掌握提公因式法二、填空题1、【解析】【分析】根据提取公因式法,提取公因式即可求解【详解】解:,故答案为:【点睛】本题考查了因

10、式分解,解题的关键是熟练掌握提取公因式法2、3【解析】【分析】先把原式化为:再利用非负数的性质求解,再求解代数式的值即可.【详解】解: , 解得: 故答案为:3【点睛】本题考查的是非负数的性质,因式分解的应用,掌握“利用完全平方公式分解因式”是解题的关键.3、【解析】【分析】根据提公因式法分解因式求解即可【详解】解:12a2b9ac故答案为:【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等4、【解析】【分析】先提取公因式4,再利用完全平方式即可求出结果【详解】故答案为:【点睛】本题考查因式分解掌握提公因

11、式和公式法进行因式分解是解答本题的关键5、 【解析】【分析】利用平方差公式和完全平方公式分解因式即可【详解】解:;故答案为:,【点睛】本题考查了用公式法分解因式,熟练掌握公式法分解因式是解决本题的关键三、解答题1、(1)11x-3;(2)ab(a-b)2【解析】【分析】(1)先按照多项式乘以多项式的法则,完全平方公式进行整式的乘法运算,再合并同类项即可;(2)先提取公因式 再按照完全平方公式分解因式即可.【详解】解:(1)(x+2)(4x1)(2x1)2 (2)a3b2a2b2+ab3 【点睛】本题考查的是整式的乘法运算,利用完全平方公式进行简便运算,同时考查综合提公因式与公式法分解因式,掌握

12、“完全平方公式的应用”是解本题的关键.2、(ab)(a+2)(a2)【解析】【分析】先分组,再提公因式,最后用平方差公式进一步进行因式分解【详解】解:a3a2b4a+4b(a34a)(a2b4b)a(a24)b(a24)(ab)(a24)(ab)(a+2)(a2)【点睛】本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键3、另一个因式为(2x+13),k的值为65【解析】【分析】设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可【详解】解:设另一个因式为(2x+a),得

13、2x2+3xk(x5)(2x+a)则2x2+3xk2x2+(a10)x5a,解得:a13,k65故另一个因式为(2x+13),k的值为65【点睛】此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解4、【解析】【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可【详解】解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等5、【解析】【分析】先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得【详解】解:原式【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁