《2021-2022学年京改版八年级数学下册第十四章一次函数必考点解析练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十四章一次函数必考点解析练习题(无超纲).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点(4,y1)、(2,y2)都在直线yx+b上,则y1和y2的大小关系是( )Ay1y2By1y2Cy1y
2、2D无法确定2、如图,一次函数的图象经过点,则下列结论正确的是( )A图像经过一、二、三象限B关于方程的解是CD随的增大而减小3、在平面直角坐标系中,任意两点,规定运算:,;当,且时,有下列三个命题:(1)若,则,;(2)若,则;(3)对任意点,均有成立其中正确命题的个数为( )A0个B1个C2个D3个4、已知点A(2,y1)和B(1,y2)都在直线y3x1上,则y1,y2的大小关系是()Ay1y2By1y2Cy1y2D大小不确定5、一次函数ymxn(m,n为常数)的图象如图所示,则不等式mxn0的解集是( )Ax2Bx2Cx3Dx36、如图,直线l是一次函数的图象,下列说法中,错误的是( )
3、A,B若点(1,)和点(2,)是直线l上的点,则C若点(2,0)在直线l上,则关于x的方程的解为D将直线l向下平移b个单位长度后,所得直线的解析式为7、直线yax+a与直线yax在同一坐标系中的大致图象可能是()ABCD8、已知4个正比例函数yk1x,yk2x,yk3x,yk4x的图象如图,则下列结论成立的是()Ak1k2k3k4Bk1k2k4k3Ck2k1k3k4Dk4k3k2k19、若直线ykx+b经过第一、二、三象限,则函数ybxk的大致图象是()ABCD10、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )A出租车的起步价为
4、10元B超过起步价以后,每公里加收2元C小明乘坐2.8公里收费为10元D小丽乘坐10公里,收费25元第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数y,那么自变量x的取值范围是_2、已知一次函数的图象与两坐标轴围成的三角形面积为4,则_3、数形结合是解决数学问题常用的思想方法之一如图,直线y2x和直线yaxb相交于点A,则方程组的解为_4、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_5、如图,在平面直角坐标系中,直线交y轴于点A(0,2),交x轴于点B,直线l垂直平分OB交
5、AB于点D,交x轴于点E,点P是直线l上且在第一象限一动点若是等腰三角形,点P的坐标是_三、解答题(5小题,每小题10分,共计50分)1、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?2、已知函数y=(m-3)x+(m2-9),当m取何值时,y是x的正比例函数?3、五和超市购进、两种饮料共200箱,两种饮料的成本与
6、销售价如下表:饮料成本(元/箱)销售价(元/箱)25353550(1)若该超市花了6500元进货,求购进、两种饮料各多少箱?(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,求与的函数关系式,并求购进种饮料多少箱时,可获得最大利润,最大利润是多少?4、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上(1)在图中作出DEF,使得DEE与ABC关于x轴对称;(2)写出D,E两点的坐标:D ,E (3)求DEF的面积5、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍
7、设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲比乙晚出发 s,甲提速前的速度是每秒 米,m ,n ;(2)当x为何值时,甲追上了乙?(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围-参考答案-一、单选题1、A【解析】【分析】由题意直接根据一次函数的性质进行分析即可得到结论【详解】解:直线yx+b中,k0,y将随x的增大而减小42,y1y2故选:A【点睛】本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k0),当k0,y随x
8、增大而增大;当k0时,y将随x的增大而减小2、A【解析】【分析】根据函数图象可知图象经过一、二、三象限,即可判断A选项,从图象上无法得知与轴的交点坐标,无法求得方程的解,即可判断B选项,根据图象与轴的交点,可知,进而可知,即可判断C选项,根据图象经过一、二、三象限,即可知随的增大而增大,进而判断D选项【详解】A. 图像经过一、二、三象限,故该选项正确,符合题意;B. 关于方程的解不一定是,不正确,不符合题意C. 根据图象与轴的交点,可知,则,故该选项不正确,不符合题意;D. 图象经过一、二、三象限,随的增大而增大,故该选项不正确,不符合题意;故选A【点睛】本题考查了一次函数图象的性质,与坐标轴
9、交点问题,增减性,熟练掌握一次函数图象的性质是解题的关键3、D【解析】【分析】根据新的运算定义分别判断每个命题后即可确定正确的选项【详解】解:(1)AB=(1+2,2-1)=(3,1),AB=12+2(-1)=0,正确;(2)设C(x3,y3),AB=(x1+x2,y1+y2),BC=(x2+x3,y2+y3),AB=BC,x1+x2=x2+x3,y1+y2=y2+y3,x1=x3,y1=y3,A=C,正确(3)(AB)C=(x1+x2+x3,y1+y2+y3),A(BC)=(x1+x2+x3,y1+y2+y3),(AB)C=A(BC),正确正确的有3个,故选:D【点睛】本题考查了命题与定理,
10、解题时注意:判断一件事情的语句,叫做命题有些命题的正确性是用推理证实的,这样的真命题叫做定理4、A【解析】【分析】首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系【详解】解:一次函数y3x1中,k30,y随x的增大而减小,21,y1y2故选:A【点睛】此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性5、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答【详解】由图象知:不等式的解集为x3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键6、B【解析】
11、【分析】根据一次函数图象的性质和平移的规律逐项分析即可【详解】解:A.由图象可知,故正确,不符合题意;B. -12,y随x的增大而减小,故错误,符合题意;C. 点(2,0)在直线l上,y=0时,x=2,关于x的方程的解为,故正确,不符合题意;D. 将直线l向下平移b个单位长度后,所得直线的解析式为+b-b=kx,故正确,不符合题意;故选B【点睛】本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键7、D【解析】【分析】若y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a0,-a0,所以
12、y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断【详解】解:A、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;B、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D【点睛】本题考查了一次函数的图象:一次函数y=kx+
13、b(k0)的图象为一条直线,当k0,图象过第一、三象限;当k0,图象过第二、四象限;直线与y轴的交点坐标为(0,b)8、A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小【详解】解:首先根据直线经过的象限,知:k30,k40,k10,k20,再根据直线越陡,|k|越大,知:|k1|k2|,|k4|k3|则k1k2k3k4,故选:A【点睛】本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小9、D【解析】【分析】直线ykx+b,当时,图象
14、经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限【详解】解:直线ykx+b经过第一、二、三象限,则,时,函数ybxk的图象经过第一、三、四象限,故选:D【点睛】本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键10、C【解析】【分析】根据(5,15),(7,19),确定函数的解析式,计算y=10时,x的值,结合生活实际,解答即可【详解】设起步价以后函数的解析式为y=kx+b,把(5,15),(7,19)代入解析式,得,解得,y=2x+5,当y=10时,x=2.5,当x=10时,y=25,C错误,D正确,B正确,A
15、正确,故选C【点睛】本题考查了一次函数的实际应用,熟练掌握待定系数法,理解生活意义是解题的关键二、填空题1、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案【详解】解:由题意得,解得,故答案为:【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键2、2或-2#-2或2【解析】【分析】由函数解析式确定与x轴的交点坐标为,与y轴的交点坐标为(0,4),然后根据函数图象与坐标轴的面积为4列出方程求解即可【详解】解:在中,当时,;当时,的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:故答案为:2或-2【点睛】题目主要
16、考查一次函数解析式的确定及其与坐标轴围成面积的计算方法,理解题意,得出方程是解题关键3、【解析】【分析】由直线y2x求得A的坐标,两直线的交点坐标为两直线解析式所组成的方程组的解【详解】解:直线y2x和直线yax+b相交于点A,A的纵坐标为3,32x,解得x,A(,3),方程组的解为故答案为:【点睛】本题考查一次函数与二元一次方程组之间的关系,理解两直线的交点坐标即为两直线解析式所组成的方程组的解是解题关键4、【解析】【分析】直接利用已知点坐标得出原点位置,进而得出答案【详解】解:如图所示,建立平面直角坐标系,轰炸机C的坐标为(-1,-2),故答案为:(-1,-2)【点睛】此题主要考查了坐标确
17、定位置,正确得出原点位置建立坐标系是解题关键5、,【解析】【分析】利用分类讨论的思想方法分三种情形讨论解答:,依据题意画出图形,利用勾股定理和轴对称的性质解答即可得出结论【详解】交轴于点,令,则,直线垂直平分交于点,交轴于点,点的横坐标为1时,如图,过点作交轴于点,则,同理,当时,如图,点在的垂直平分线上,点的纵坐标为1,当时,则,如图,综上,若是等腰三角形,点的坐标是或或或故答案为:或或或【点睛】本题主要考查了一次函数图象的性质,一次函数图象上点的坐标的特征,等腰三角形的性质,勾股定理,线段垂直平分线的性质,利用分类讨论的思想方法解答是解题的关键三、解答题1、东经116度,南纬38度可以表示
18、为(116,38)【解析】【分析】根据“经度在前,纬度在后”的顺序,可以将东经116度,南纬38度用有序数对(116,38)表示【详解】解:由题意可知东经116度,南纬38度,可用有序数对(116,38)表示故东经116度,南纬38度表示为(116,38)【点睛】本题考察了用有序数对表示位置解题的关键在于读懂题意中给定的规则2、-3【解析】【分析】根据正比例函数定义即可求解【详解】解:y=(m-3)x+(m2-9)是正比例函数,m2-9=0且m-30,m=【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义“形如(k为常数,且k0)的函数叫正比例函数”是解题关键 3、(1)购进A种饮料50
19、箱,则购进B种饮料150箱;(2)求购进种饮料50箱时,可获得最大利润,最大利润是2750元【解析】【分析】(1)设购进A种饮料箱,则购进B种饮料箱,根据两种饮料的成本乘以数量等于6500元,列出二元一次方程即可解决问题;(2)根据利润等于销售价减去成本再乘以销量,列出与的函数关系式,进而根据一次函数的性质求得最大值【详解】(1)设购进A种饮料箱,则购进B种饮料箱,根据题意得25x+35y=6500x+y=200解得x=50y=150答:购进A种饮料50箱,则购进B种饮料150箱(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,则w=35-25a+50-35200-a=3000-5a-
20、50随的增大而减小,又a=50时,可获得最大利润,最大利润是3000-250=2750(元)【点睛】本题考查了二元一次方程组的应用,一次函数的应用,根据题意列出关系式和方程组是解题的关键4、最大588cm故答案为3,588(5)根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;当x=3,5时,b(a-2b)2=3.5(20-23.5)2=591.5cm3,当时,b(a-2b)2=3.25(20-23.25)2=592.3125cm3,当时,b(a-2b)2=3.375(20-23.375)2=592.5234375cm3,当剪去图形的边长为3.3cm时,
21、所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位【点睛】本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键2(1)直线的解析式为;(2);(3)或【解析】【分析】(1)在中,利用勾股定理确定,由对称设,再利用勾股定理即可确定点B的坐标,然后代入解析式即可;(2)由(1)得,BC=OB=3,根据O点关于直线AB的对称点C点在直线AD上,可得,即两个三角形的面积相同,使的面积
22、与的面积相同,只需要找到的面积与的面积相同的点即可,设点,两个三角形的高均为线段OA长度,只需要底相同即可,根据底相同列出方程求解即可得;(3)设若直线、与直线夹角等于,由图可得为等腰直角三角形,作于,于,可得,利用全等三角形的判定及性质可得,直线过,直线的解析式为:,设坐标为,则,由各线段间的数量关系可得点坐标为,将其代入直线AB的解析式,即可得出t的值,然后点E、F坐标,代入解析式求解即可【详解】解:(1),即,又,设直线的解析式为,将点代入得,直线的解析式为.在中,点、点关于直线对称,设,在中,将点B代入直线的解析式为;(2)由(1)得,BC=OB=3,如图所示:O点关于直线AB的对称点
23、C点在直线AD上,使,则设点,两个三角形的高均为线段OA长度,使底相同即:,解得:或(舍去),;(3)如图,设若直线、与直线夹角等于,即为等腰直角三角形,作于,于,在与中,直线过,即,解得:,直线的解析式为:,设坐标为,则,由线段间的关系可得:点坐标为,点在直线上,解得:,当直线过点时,解得:;当直线过点时,解得:;所以或【点睛】本题主要考查了一次函数的综合应用,涉及勾股定理、全等三角形的判定和性质等知识点,作出相应图象,根据图象之间的关系进行求解是本题解题的关键3(1)见解析;(2)(1,4),(4,1);(3)9.5【解析】【分析】(1)先找出点A、B、C关于x轴的对称点,然后依次连接即可
24、得; (2)根据DEF的位置,即可得出D,E两点的坐标;(3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到DEF的面积【详解】解:(1)如图所示,DEF即为所求;(2)由图可得,D(1,4),E(4,1);故答案为:(1,4),(4,1);(3),面积为9.5【点睛】题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键5、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之间的距离不超过30米时,x的取值范围是55x85或92.5x100【解析】【分析】(1)根据图象x=10时,y=0知乙比甲早10
25、s;由x=10时y=40,求得提速前速度;根据时间=路程速度可求提速后所用时间,即可得到m值,进而得出n的值;(2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x的值;(3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可【详解】解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是(m/s);甲出发一段时间后速度提高为原来的3倍,甲提速后速度为6m/s,故提速后甲行走所用时间为:(s),m=30+60=90(s)n=400(s)
26、;故答案为10;2;90;100;(2)设OA段对应的函数关系式为y=kx,A(90,360)在OA上,90k=360,解得k=4,y=4x设BC段对应的函数关系式为y=k1x+b,B(30,40)、C(90,400)在BC上,解得,y=6x-140,由乙追上了甲,得4x=6x-140,解得x=70答:当x为70秒时,甲追上了乙(3)由题意可得,解得x55或x85,即55x85时,甲、乙之间的距离不超过30米; 当4x40030时,解得x92.5,即92.5x100时,甲、乙之间的距离不超过30米; 由上可得,当甲、乙之间的距离不超过30米时,x的取值范围是55x85或92.5x100【点睛】本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题