《2021-2022学年基础强化京改版八年级数学下册第十四章一次函数必考点解析练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化京改版八年级数学下册第十四章一次函数必考点解析练习题.docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列说法中,能确定位置的是( )A禅城区季华五路B中山公园与火车站之间C距离祖庙300米D金马影剧院大厅5排
2、21号2、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )Ay1y2By1y2Cy1y2Dy1y23、函数y的自变量x的取值范围是()Ax0Bx1Cx1D全体实数4、第24届冬季奥林匹克运动会将于2022年2月4日20日在北京市和张家口市联合举行以下能够准确表示张家口市地理位置的是( )A离北京市100千米B在河北省C在怀来县北方D东经114.8,北纬40.85、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )ABCD6、如图,直线l是一次函数的图象,下列说法中,错误的是( )
3、A,B若点(1,)和点(2,)是直线l上的点,则C若点(2,0)在直线l上,则关于x的方程的解为D将直线l向下平移b个单位长度后,所得直线的解析式为7、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据时间/分钟0510152025温度/102540557085若温度的变化是均匀的,则18分钟时的温度是( )A62B64C66D688、如图,直线与分别交轴于点,则不等式的解集为( )ABCD或9、点在( )A第一象限B第二象限C第三象限D第四象限10、已知点A(2,y1)和B(1,y2)都在直线y3x1上,则y1,y2的大小关系是()Ay1y2By1y2Cy1y2D大
4、小不确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面直角坐标系中,点P(3,4)到x轴的距离是_2、如图,已知A(6,0)、B(3,1),点P在y轴上,当y轴平分APB时,点P的坐标为_3、已知点在轴上,则_;点的坐标为_4、如果 ,y=2,那么x = _5、某通讯公司推出了两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费更加划算,通讯时间x(分钟)的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、张明和爸爸一起出去跑步,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张明继续前行,5分钟后也原路返回,两
5、人恰好同时到家张明和爸爸在整个过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示(1)的值为_;(2)张明开始返回时与爸爸相距_米;(3)第_分钟吋,两人相距900米2、已知一次函数的图像经过点A(1,2),B(0,1)(1)求k、b的值;(2)画出这个函数的图像;(3)当x1时,y的取值范围是 3、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标 4、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式若购进N95型1
6、0箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元 (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口
7、罩获得最大的利润?最大的利润是多少?5、已知直线和直线相交于点A,且分别与x轴相交于点B和点C(1)求点A的坐标;(2)求的面积-参考答案-一、单选题1、D【解析】【分析】根据确定位置的方法逐一判处即可【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:用有序数对确定物体位置;用方向和距离来确定物体的位置2、A【解析】【分析】先根据图象在平面
8、坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:一次函数y=mx+n的图象经过第一、二、四象限,m0y随x增大而减小,13,y1y2.故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m、n的取值范围成为解答本题的关键.3、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得,所以自变量x的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.4
9、、D【解析】【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8,北纬40.8为准确的位置信息故选:D【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键5、A【解析】【分析】设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解【详解】解:设直线的解析式为 ,把点,点代入,得: ,解得:
10、,直线的解析式为,将直线向下平移8个单位得到直线,直线的解析式为 ,点关于轴对称的点为 ,设直线的解析式为 ,把点 ,点代入,得: ,解得:,直线的解析式为,将直线与直线的解析式联立,得: ,解得: ,直线与直线的交点坐标为故选:A【点睛】本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键6、B【解析】【分析】根据一次函数图象的性质和平移的规律逐项分析即可【详解】解:A.由图象可知,故正确,不符合题意;B. -12,y随x的增大而减小,故错误,符合题意;C. 点(2,0)在直线l上,y=0时,x=2,关于x的方程
11、的解为,故正确,不符合题意;D. 将直线l向下平移b个单位长度后,所得直线的解析式为+b-b=kx,故正确,不符合题意;故选B【点睛】本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键7、B【解析】【分析】根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,代入解析式求解确定函数解析式,然后将代入求解即可得【详解】解:根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,代入解析式可得:,解得:,温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,当时,故选:B【点睛】题
12、目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键8、C【解析】【分析】观察图象,可知当x0.5时,y=kx+b0,y=mx+n0;当0.5x2时,y=kx+b0,y=mx+n0;当x2时,y=kx+b0,y=mx+n0,二者相乘为正的范围是本题的解集【详解】解:由图象可得,当x2时,(kx+b)0,(mx+n)0,则(kx+b)(mx+n)0,故A错误;当0x2时,kx+b0,mx+n0,(kx+b)(mx+n)0,但是没有包含所有使得(kx+b)(mx+n)0的解集,故B错误;当时,kx+b0,mx+n0,故(kx+b)(mx+n)0,且除此范围之外都不能使得(
13、kx+b)(mx+n)0,故C正确;当x0.5时,y=kx+b0,y=mx+n0;当x2时,y=kx+b0,y=mx+n0,则(kx+b)(mx+n)0,故D错误;故选:C【点睛】本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键9、C【解析】【分析】根据各象限内点的坐标特征解答【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)10、A【解析】【分析】首先判定出一次函数的增减性为y随
14、x的增大而减小,然后即可判断出y1,y2的大小关系【详解】解:一次函数y3x1中,k30,y随x的增大而减小,21,y1y2故选:A【点睛】此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性二、填空题1、4【解析】【分析】根据点的坐标表示方法得到点P(3,4)到x轴的距离是纵坐标的绝对值即|4|,然后去绝对值即可【详解】解:点P(3,-4)到x轴的距离为|4|=4故答案为:4【点睛】此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键2、【解析】【分析】当y轴平分APB时,点A关于y轴的对称点A在BP上,利用待定系数法求得AB的表达式,
15、即可得到点P的坐标【详解】解:如图,当y轴平分APB时,点A关于y轴的对称点A在BP上,A(6,0),A (-6,0),设AB的表达式为y=kx+b,把A (-6,0),B(3,1)代入,可得,解得,令x=0,则y=2,点P的坐标为(0,2),故答案为:(0,2)【点睛】本题主要考查了坐标与图形性质,掌握轴对称的性质以及待定系数法是解决问题的关键3、 【解析】【分析】根据轴上的点,纵坐标为0,求出m值即可【详解】解:点在轴上,解得,则;点的坐标为(-2,0);故答案为:-3,(-2,0)【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为04、3【解析】【分析】把y=2代入
16、y=x计算即可【详解】解:y=2,2=x,x=3故答案为:3【点睛】本题考查了正比例函数的问题,做题的关键是掌握将y值代入即可求解5、x300【解析】【分析】根据题意首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围.【详解】解:由题设可得不等式kx30x.y1kx30经过点(500,80),k,y1x30,y2x,解得:x300,y60.两直线的交点坐标为(300,60),当x300时不等式kx30x中x成立,故答案为:x300.【点睛】本题考查的是用一次函数解决实际问题注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,
17、结合自变量的取值范围确定最值三、解答题1、(1)3000;(2)1500;(3)18或30【解析】【分析】(1)根据一次函数图象,两人同时从家出发后的速度一致,根据张明的路程除以时间即可求得速度,根据题意m=15,即可求得的值;(2)根据(1)中的值代入函数解析式,求得,根据图象求得,根据题意求得当x=20时,y1-y2的值即可求解;(3)分两种情况讨论,当张明的爸爸返回时,张明继续跑,和张明返回时,根据(2)的结论令y1-y2=900,解方程即可求解【详解】解:(1)400020=200米每分钟根据题意张明继续前行,5分钟后也原路返回,m=20-5=15n=15200=3000故答案为:30
18、00;(2)设y1=ax+c,y2=kx+b将20,4000,45,0代入,将点15,3000,45,0代入,得20a+c=400045a+c=0,15k+b=300045k+b=0解得a=-160c=7200,k=-100b=4500y1=-160x+7200,y2=-100x+4500根据题意x=20时,y1-y2=-16020+7200-10020+4500=4000-2500=1500(米)故答案为:1500;(3)当张明的爸爸返回时,张明继续跑,和张明返回时,设两人从家出发,至20分钟返回时的解析式为y=ax,将20,4000代入,即4000=20a解得a=200即y=200x200
19、x-100x+4500=900解得x=18两人都返回时,则y1-y2=900-160x+7200-100x+4500=900解得x=30第30分钟时,两人相距900米故答案为:18或30【点睛】本题考查了一次函数的应用,根据函数图象获取信息是解题的关键2、(1);(2)见详解;(3)【解析】【分析】(1)由待定系数法进行计算,即可得到答案;(2)由两点画图法,即可画出一次函数的图像;(3)结合一次函数的性质,即可得到答案【详解】解:(1)一次函数的图像经过点A(1,2),B(0,1),;(2)由(1)可知,一次函数为经过点A(1,2),B(0,1),如图:(3)当时,则,由图像可知,y随x增大
20、而增大,当x1时,y的取值范围是;故答案为:【点睛】本题考查了待定系数法求一次函数的解析式,画函数图像,解题的关键是正确的求出一次函数的解析式3、(1)见解析;(2)(0,)【解析】【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标【详解】解:(1)如图,点P即为所求;(2)A的坐标(0,6),点B的坐标(3,0),OA=6,OB=3,P
21、A=PB=OA-OP=6-OP,PB2-OP2=OB2,(6-OP)2-OP2=32,解得OP=,点P的坐标为(0,)【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质4、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可; (2)设购进N95型a箱,依题意得:2250(1+10
22、%)a+50080%(80-a)115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: 10x+20y=3250030x+40y=87500 ,解得: x=2250y=500 ,答:N95型和一次性成人口罩每箱进价分别为2250元、500元(2)解:设购进N95型a箱,则一次性成人口罩为(80a)套,依题意得: 2250(1+10%)a+50080%(80a)115000 解得:a40a
23、取正整数,0a40a的最大值为40答:最多可购进N95型40箱(3)解:设购进的口罩获得最大的利润为w, 则依题意得:w500a+100(80a)400a+8000,又0a40,w随a的增大而增大,当a40时,W40040+800024000元即采购N95型40个,一次性成人口罩40个可获得最利润为24000元答:最大利润为24000元【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式5、(1)A1,3;(2)9【解析】【分析】(1)根据题意联立两直线解析式解二元一次方程组即可求得点的坐标;(2)分别令,即可求得点B,C的坐标,进而求得SABC【详解】解:(1)由题意得y=x+2y=-x+4 解得,x=1y=3 A(1,3). (2)过A作ADx轴于点D.y=x+2与x轴交点B(-2,0), y=-x+4与x轴交点C(4,0)BC=6. A(1,3),AD=3. SABC=12BCAD=1263=9【点睛】本题考查了两直线交点问题,两直线与坐标轴围成的三角形的面积,数形结合是解题的关键