《复习高中数学三角函数试题及答案详解.pdf》由会员分享,可在线阅读,更多相关《复习高中数学三角函数试题及答案详解.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习好资料欢迎下载1 已知函数 f(x)tan 2x4.(1)求 f(x)的定义域与最小正周期;(2)设 0,4,若 f2 2cos2,求 的大小2 在 ABC 中,a,b,c 分别为内角A,B,C 所对的边长,a3,b2,12cos(BC)0,求边 BC 上的高3 已知 ABC 的一个内角为120,并且三边长构成公差为4 的等差数列,则ABC 的面积为 _4 在 ABC 中,若 b5,B4,tanA2,则 sinA_;a_.5 在 ABC 中,若 b5,B4,sinA13,则 a_.6ABC 的内角 A、B、C 的对边分别为a、b、c,asinAcsinC2asinCbsinB.(1)求 B
2、;(2)若 A75,b2,求 a,c.图 15 7 如图 15,ABC 中,ABAC2,BC23,点 D 在 BC 边上,ADC45,则AD 的长度等于 _2 8 若 ABC 的面积为3,BC2,C60,则边 AB 的长度等于 _9 设 ABC 的内角 A、B、C 所对的边分别为a、b、c,已知 a1,b 2,cosC14.(1)求 ABC 的周长;(2)求 cos(AC)的值10 在 ABC 中,角 A,B,C 的对边分别是a,b,c,已知 sinCcosC1sinC2.(1)求 sinC的值;(2)若 a2b24(ab)8,求边 c 的值11 ABC 的三个内角A,B,C 所对的边分别为a
3、,b,c,asinAsinBbcos2A2a,则ba()A2 3 B2 2 C.3 D.2 12 ABC 的三个内角A,B,C 所对的边分别为a,b,c,asinAsinBbcos2A2a.(1)求ba;(2)若 c2b23a2,求 B.13 ABC 中,B120,AC7,AB5,则 ABC 的面积为 _14 在 ABC 中,内角 A,B,C 的对边分别为a,b,c.已知cosA 2cosCcosB2cab.(1)求sinCsinA的值;(2)若 cosB14,ABC 的周长为 5,求 b 的长15 在 ABC 中,角 A,B,C 所对的边分别为a,b,c.已知 sinAsinCpsinB(p
4、R),且 ac14b2.(1)当 p54,b 1 时,求 a,c 的值;(2)若角 B 为锐角,求p 的取值范围16 在 ABC 中,角 A,B,C 的对边分别是a,b,c,已知 3acosAccosBbcosC.(1)求cosA 的值;(2)若 a1,cosBcosC2 33,求边 c 的值17 在 ABC 中,内角 A,B,C 的对边分别为a,b,c.已知 BC,2b3a.(1)求 cosA 的值;(2)求 cos 2A4的值18 设 aR,f(x)cosx(asinxcosx)cos22x 满足 f 3f(0)求函数 f(x)在4,1124精品资料-欢迎下载-欢迎下载 名师归纳-第 1
5、页,共 8 页 -学习好资料欢迎下载上的最大值和最小值19 设函数 f(x)sinxcosx3cos(x)cos x(xR)(1)求 f(x)的最小正周期;(2)若函数 yf(x)的图象按 b4,32平移后得到函数yg(x)的图象,求 yg(x)在 0,4上的最大值20 函数 f(x)2cos2x3sin2x(xR)的最小正周期和最大值分别为()A2,3B2,1C,3D,1 21 函数 f(x)Asin(x )A0,0,|2的部分图象如图所示(1)求 f(x)的最小正周期及解析式;(2)设 g(x)f(x)cos 2x,求函数g(x)在区间0,2上的最大值和最小值22 在 ABC 中,A,B,
6、C 所对的边分别为a,b,c,若 A B12,且 a b13,则 cos2B 的值是()A12B.12C32D.3223 在 ABC 中,角 A,B,C 所对的边分别为a,b,c,S表示 ABC 的面积,若acosBbcosAcsinC,S14(b2c2a2),则 B()A90 B60C45 D301 已知函数 f(x)tan 2x4.(1)求 f(x)的定义域与最小正周期;(2)设 0,4,若 f2 2cos2,求 的大小课标理数 15.C72011 天津卷 【解答】(1)由 2x42k,k Z,得 x8k2,kZ.所以 f(x)的定义域为xR x8k2,kZ.f(x)的最小正周期为2.(2
7、)由 f22cos2,得 tan 42cos2,sin a4cos 42(cos2 sin2),整理得sin coscos sin2(cos sin)(cos sin)因为 0,4,所以 sin cos 0,因此(cos sin)212,即 sin2 12.由 0,4,得 2 0,2,所以 2 6,即 12.2 在 ABC 中,a,b,c 分别为内角A,B,C 所对的边长,a3,b2,12cos(BC)0,求边 BC 上的高课标文数16.C82011 安徽卷 本题考查两角和的正弦公式,同角三角函数的基本关系,利用正弦定理或余弦定理解三角形,以及三角形的边与角之间的对应大小关系,考查综合运算求解
8、能力【解答】由 12cos(BC)0 和 BC A,得 12cosA0,cosA12,sinA精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 8 页 -文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1
9、F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7
10、 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8
11、I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S
12、7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M
13、1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10
14、H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2学习好资
15、料欢迎下载32.再由正弦定理,得sinBbsinAa22.由 ba 知 BA,所以 B 不是最大角,B2,从而cosB1sin2B22.由上述结果知sinCsin(AB)223212.设边 BC 上的高为h,则有hbsinC312.3 已知 ABC 的一个内角为120,并且三边长构成公差为4 的等差数列,则ABC 的面积为_153【解析】不妨设 A120,cb,则 ab4,cb4,于是 cos120 b2 b42 b422b b412,解得 b10,所以 c6.所以 S12bcsin120 153.4 在 ABC 中,若 b5,B4,tanA2,则 sinA_;a_.【解析】因为 tanA2,
16、所以 sinA2 55;再由正弦定理有:asinAbsinB,即a2 55522,可得 a2 10.5 在 ABC 中,若 b5,B4,sinA13,则 a_.课标文数 9.C82011 北京卷 523【解析】由正弦定理有:asinAbsinB,即a13522,得 a5 23.6 ABC 的内角 A、B、C 的对边分别为a、b、c,asinAcsinC2asinCbsinB.(1)求 B;(2)若 A75,b2,求 a,c.【解答】由正弦定理得a2c22acb2.由余弦定理得b2a2c22accosB.故 cosB22,因此 B45.(2)sinAsin(30 45)sin30 cos45 c
17、os30 sin45 264.故 absinAsinB26213,c bsinCsinB2sin60 sin45 6.课标理数 14.C8图 15 7 如图 15,ABC 中,ABAC2,BC23,点 D 在 BC 边上,ADC45,则AD 的长度等于 _2【解析】在 ABC 中,由余弦定理,有cosCAC2BC2AB22AC BC232222 332,则 ACB30.在ACD 中,由正弦定理,有ADsinCACsinADC,ADAC sin30 sin45 212222,即 AD 的长度等于2.8 若 ABC 的面积为3,BC2,C60,则边 AB 的长度等于 _课标文数 14.C82011
18、 福建卷 2【解析】方法一:由SABC12AC BCsinC,得精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 8 页 -文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10
19、K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 Z
20、B9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9
21、D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文
22、档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU
23、1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A
24、7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2学习好资料欢迎下载12AC 2sin6
25、0 3,解得 AC2.由余弦定理,得AB2AC2BC22AC BCcos60 2222222124,AB2,即边 AB 的长度等于2.方法二:由SAB C12AC BCsinC,得12AC 2sin60 3,解得 AC2.ACBC2,又 ACB60,ABC 是等边三角形,AB2,即边 AB 的长度等于2.9 设 ABC 的内角 A、B、C 所对的边分别为a、b、c,已知 a1,b 2,cosC14.(1)求 ABC 的周长;(2)求 cos(AC)的值课标理数 16.C82011 湖北卷 【解答】(1)c2a2b2 2abcosC144144,c2,ABC 的周长为 abc1225.(2)co
26、sC14,sinC1cos2C1142154,sinAasinCc1542158.ac,A0),由余弦定理,有cos120 52x27210 x,整理得x25x240,解得 x3,或 x 8(舍去),即 BC3 所以 SABC12AB BCsinB1253sin120 1253321534.14 在 ABC 中,内角 A,B,C 的对边分别为a,b,c.已知cosA 2cosCcosB2cab.(1)求sinCsinA的值;(2)若 cosB14,ABC 的周长为 5,求 b 的长【解答】(1)由正弦定理,设asinAbsinBcsinCk.则2cab2ksinCksinAksinB2sinC
27、sinAsinB.所以原等式可化为cosA2cosCcosB2sinCsinAsinB.即(cosA2cosC)sinB(2sinCsinA)cosB,化简可得 sin(AB)2sin(BC),又因为ABC ,所以原等式可化为sinC2sinA,因此sinCsinA2.(2)由正弦定理及sinCsinA2 得 c2a,由余弦定理及cosB14得b2a2c22accosBa24a24a2144a2.所以 b 2a.又 abc 5.从而 a1,因此 b2.15 在 ABC 中,角 A,B,C 所对的边分别为a,b,c.已知 sinAsinCpsinB(pR),且 ac14b2.(1)当 p54,b
28、 1 时,求 a,c 的值;(2)若角 B 为锐角,求p 的取值范围【解答】(1)由题设并利用正弦定理,得ac54,ac14,解得a 1,c14,或a14,c1.(2)由余弦定理,b2a2c22accosB(ac)22ac2accosBp2b212b212b2cosB,即p23212cosB,因为 0cosB1,得 p232,2,由题设知p 0,所以62p2.16 在 ABC 中,角 A,B,C 的对边分别是a,b,c,已知 3acosAccosBbcosC.(1)求cosA 的值;(2)若 a1,cosBcosC2 33,求边 c 的值【解答】(1)由余弦定理b2a2c22accosB,c2
29、a2b22abcosC,精品资料-欢迎下载-欢迎下载 名师归纳-第 5 页,共 8 页 -文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编
30、码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A
31、1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D
32、7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C
33、8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3
34、S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9
35、M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2学习好资料欢迎下载有 ccosBbcosCa,代入已知条件得3acosAa,即
36、 cosA13.(2)由 cosA13得 sinA223,则 cosB cos(AC)13cosC223sinC,代入 cosBcosC2 33,得 cosC2sinC3,从而得 sin(C)1,其中 sin 33,cos 63,0 2.则 C 2,于是 sinC63,由正弦定理得casinCsinA32.17 在 ABC 中,内角 A,B,C 的对边分别为a,b,c.已知 BC,2b3a.(1)求 cosA 的值;(2)求 cos 2A4的值课标文数 16.C92011 天津卷 【解答】(1)由 BC,2b3a,可得 cb32a.所以 cosAb2c2a22bc34a234a2a2232a3
37、2a13.(2)因为 cosA13,A(0,),所以 sinA1 cos2A223,故 cos2A2cos2A179.sin2A2sinAcosA4 29.所以 cos 2A4cos2Acos4sin2Asin4 79224292287 218.18 设 aR,f(x)cosx(asinxcosx)cos22x 满足 f 3f(0)求函数 f(x)在4,1124上的最大值和最小值大纲理数 16.C92011 重庆卷 【解答】f(x)asinxcosxcos2xsin2xa2sin2xcos2x.由 f 3f(0)得32a212 1,解得 a2 3.因此 f(x)3sin2xcos2x2sin2
38、x6.当 x4,3时,2x63,2,f(x)为增函数,当x3,1124时,2x62,34,f(x)为减函数所以f(x)在4,1124上的最大值为f32.又因 f43,f11242,故 f(x)在4,1124上的最小值为f11242.19 设函数 f(x)sinxcosx3cos(x)cos x(xR)(1)求 f(x)的最小正周期;(2)若函数 yf(x)的图象按 b4,32平移后得到函数yg(x)的图象,求 yg(x)在 0,4上的最大值 大纲文数 18.C92011 重庆卷 【解答】(1)f(x)12sin2x3cos2x12sin2x32(1cos2x)12sin2x32cos2x32s
39、in 2x332.故 f(x)的最小正周期为T22.(2)依题意 g(x)f x432sin 2 x433232sin 2x63.当 x 0,4时,2x6 6,3,g(x)为增函数,所以 g(x)在 0,4上的最大值为g4332.精品资料-欢迎下载-欢迎下载 名师归纳-第 6 页,共 8 页 -文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K
40、3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB
41、9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D
42、10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档
43、编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1
44、A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7
45、D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5
46、C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2学习好资料欢迎下载20 函数 f(x)2cos2x3sin2x(xR)的最小正周期和最大值分别为()A2,3B2,1C,3D,1 21 函数 f(x)Asin(x )A0,0,|2的部分图象如图所示(1)求 f(x)的最小正周期及解析式;(2)设 g(x)f(x)cos 2x,求函数g(x)在区间0,2上的最大值和最小值22 在 ABC 中,A,B,C 所对的边分别为a,b,c,若 A B12,且 a b13,则 cos2B 的值是()精品资料-欢迎下载-欢迎下载 名
47、师归纳-第 7 页,共 8 页 -文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 Z
48、B9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9
49、D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文
50、档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU1A1F7A7D7 HC5C8I10K3S7 ZB9M1V9D10H2文档编码:CU