《反比例函数与一次函数相结合常见大题简单题型.pdf》由会员分享,可在线阅读,更多相关《反比例函数与一次函数相结合常见大题简单题型.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品资料欢迎下载1.若反比例函数xky与一次函数42xy的图象都经过点 A(a,2)(1)求反比例函数xky的解析式;(2)当反比例函数xky的值大于一次函数42xy的值时,求自变量x 的取值范围2.如图,已知直线xy2经过点 P(2,a),点 P 关于y轴的对称 点 P 在反比例函数xky(0k)的图象上(1)求a的值;(2)直接写出点 P 的坐标;(3)求反比例函数的解析式3.已知:如图,在平面直角坐标系xOy中,直线AB 分别与xy、轴交于点 B、A,与反比例函数的图象分别交于点C、D,CEx轴于点 E,1tan422ABOOBOE,(第 19 题)x y O xy2PPxky11-第
2、1 页,共 9 页精品p d f 资料 可编辑资料-精品资料欢迎下载(1)求该反比例函数的解析式;(2)求直线AB 的解析式4.已知一次函数2yx与反比例函数kyx,其中一次函数2yx的图象经过点 P(k,5)试确定反比例函数的表达式;若点 Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标5.如图,已知反比例函数11kyx(k10)与一次函数2221(0)yk xk相交于 A、B 两点,ACx 轴于点 C.若OAC 的面积为 1,且 tanAOC2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出 B 点的坐标,并指出当x 为何值时,反比例函数y1的值大于一次函数 y
3、2的值?6.如图,四边形 ABCD 为菱形,已知 A(0,4),B(-3,0)。求点 D 的坐标;求经过点 C 的反比例函数解析式.-第 2 页,共 9 页精品p d f 资料 可编辑资料-文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:
4、CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T
5、8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:
6、CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T
7、8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:
8、CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T
9、8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7精品资料欢迎下载7.如图,一次函数3ykx的图象与反比例函数myx(x0)的图象交于点 P,PAx 轴于点 A,PBy 轴于点 B,一次函数的图象分别交x 轴、y 轴于点
10、 C、点 D,且 SDBP=27,12OCCA。(1)求点 D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?8.如图,已知 A(4,a),B(2,4)是一次函数ykxb 的图象 和反比例函数xmy的图象的交点.(1)求反比例函数和一次函数的解析式;(2)求 AOB 的面积.9.如图,一次函数 ykxb 与反比例函数 yxm的图象交于 A(2,3),B(3,n)两点(1)求一次函数与反比例函数的解析式;x y A O P B C D-第 3 页,共 9 页精品p d f 资料 可编辑资料-文档编码:CK1A4W3X2W5 HV6
11、A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7
12、文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6
13、A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7
14、文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6
15、A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7
16、文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6
17、A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7精品资料欢迎下载(2)根据所给条件,请直接写出不等式kxbxm的解集 _;(3)过点 B 作 BCx 轴,垂足为 C,求 SABC10.如图,一次函数bxy的图象经过点 B(1,0),且与反比例函数xky(k为不等于 0 的常数)的图象在第一象限交于点A(1,n)求:(1)一次函数和反比例函数的解析式;(2)当61x时,反比例函数 y 的取值范围11.已知直线xy3与双曲线xmy5交于点 P(1,
18、n).(1)求 m的值;(2)若点),(11yxA,),(22yxB在双曲线xmy5上,且021xx,试比较1y,2y的大小.12.如图,在平面直角坐标系中,一次函数ykxb(k 0)的图象与反比例函数y O A B x-第 4 页,共 9 页精品p d f 资料 可编辑资料-文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文
19、档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A
20、8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文
21、档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A
22、8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文
23、档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A
24、8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7精品资料欢迎下载xmy(m0)的图象相交于 A、B 两点求:(1)根据图象写出A、
25、B 两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x 为何值时,一次函数值大于反比例函数值.13.如图,已知一次函数0kbkxy的图像与x轴,y 轴分别交于 A(1,0)、B(0,1)两点,且又与反比例函数0mxmy的图像在第一象限交于C点,C点的横坐标为 2.求一次函数的解析式;求 C点坐标及反比例函数的解析式.14.如图所示,在平面直角坐标系中,一次函数1ykx的图象与反比例函数9yx的图象在第一象限相交于点A过点A分别作x轴、y轴的垂线,垂足为点B、C如果四边形C O A B xyAOxBy1121223题图-第 5 页,共 9 页精品p d f 资料 可编辑资
26、料-文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 H
27、V6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5
28、F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 H
29、V6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5
30、F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 H
31、V6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5
32、F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7精品资料欢迎下载OBAC是正方形,求一次函数的关系式15.如图,反比例函数xy2的图像与一次函数bkxy的图像交于点A(,2),点 B(2,n),一次函数图像与y 轴的交点为C。(1)求一次函数解析式;(2)求 C点的坐标;(3)求 AOC 的面积。16.如图7,已知一次函数1yxm(m 为常数)的图象与反比例函数2kyx(k 为常数,0k)的图象相交于
33、点A(1,3)(1)求这两个函数的解析式及其图象的另一交点B的坐标;(2)观察图象,写出使函数值12yy的自变量x的取值范围17.反比例函数21myx的图象如图所示,1(1)Ab,2(2)Bb,是该图象上的两点y x B 111 2 3 3 1 2 A(1,3)图 7 A C O B x-第 6 页,共 9 页精品p d f 资料 可编辑资料-文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK
34、1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J
35、7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK
36、1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J
37、7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK
38、1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J
39、7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7精品资料欢迎下
40、载(1)比较1b与2b的大小;(2)求m的取值范围18.若反比例函数xky与一次函数42xy的图象都经过点A(a,2)(1)求反比例函数xky的解析式;(2)当反比例函数xky的值大于一次函数42xy的值时,求自变量x 的取值范围19.如图,已知反比例函数11kyx(k10)与一次函数2221(0)yk xk相交于A、B两点,ACx轴于点C.若OAC的 面积为 1,且 tanAOC 2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?y x O-第 7 页,共 9 页精品p d f 资料 可编辑资料-文档编码:CK
41、1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J
42、7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK
43、1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J
44、7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK
45、1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J
46、7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK
47、1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7精品资料欢迎下载20.如图,函数bxky11的图象与函数xky22(0 x)的图象交于A、B两点,与y轴交于C点,已知A点坐标为(2,1),C点坐标为(0,3)(1)求函数1y的表达式和B点的坐标;(2)观察图象,比较当0 x时,1y与2y的大小.21.一次函数y=kx+b 图象与反比例函数y=mx的图象交于点A(2,1),B(1,n)两点。(1)求反比例函数的解析式(2
48、)求一次例函数的解析式(3)求 AOB 的面积x y 图 10 O B A C D A B O C x y-第 8 页,共 9 页精品p d f 资料 可编辑资料-文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 H
49、V6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5
50、F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 HV6A8P1T8J7 ZB5F9L9E5F7文档编码:CK1A4W3X2W5 H