《七年级数学全等三角形证明精选题.docx》由会员分享,可在线阅读,更多相关《七年级数学全等三角形证明精选题.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、先做几道基础题:1、如图(1):,垂足为D,。求证:。2. 如图(8):A、B、C、D四点在同一直线上,。 求证:。3、如图(10),。 求证:。4. 如图:,。 求证:。一解答题(共16小题)1如图,已知,(1)求证:;(2)请你找出图中还有的其他几对全等三角形(只要直接写出结果,不要证明)2如图,在中,90,D是斜边上的一点,于E,交的延长线于F求证:3如图,点E在外部,点D在边上,交于点F,若1=2=3,试说明下列结论正确的理由:(1)E; (2)4如图:,C求证:5如图,在中,D是的中点,连接,在的延长线上取一点E,连接,与全等吗?为什么?6(2010顺义区)已知:如图,点D是的中点,
2、平分,垂足为E求证:7(2010十堰)如图,中,求证:8(2008南宁)如图,在中,D是的中点,垂足分别是E、F,(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明9(2005新疆)在中,90,直线经过点C,且于D,于E,求证:10如图,90,E是上的一点,且,1=2求证:11如图,在中,直线l经过顶点C,过A,B两点分别作l的垂线,E,F为垂足,求证:9012(2002湛江)如图,有一池塘要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接并延长到D,使连接并延长到E,使连接,那么量出的长,就是A、B的距离请说明的长就是A、B的距离的理由1
3、3(2010广安)已知:如图,在矩形中,求证:14(2005三明)已知:如图,1=2,求证:3=415如图,和都是等腰直角三角形,与相交于点M,交于点N证明:(1);(2)16如图所示,都是等边三角形,求证:答案与评分标准一解答题(共16小题)1如图,已知,(1)求证:;(2)请你找出图中还有的其他几对全等三角形(只要直接写出结果,不要证明)考点:全等三角形的判定。专题:证明题。分析:(1)根据可直接解答;(2)根据已知条件和(1)的结论进行判断做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏解答:(1)证明:,D,(2)解:全等三角形有:和;和点评:本题重点考查了三角形全
4、等的判定定理,普通两个三角形全等共有四个定理,即、,直角三角形可用定理,但、,无法证明三角形全等,本题是一道较为简单的题目2如图,在中,90,D是斜边上的一点,于E,交的延长线于F求证:考点:全等三角形的判定。专题:证明题。分析:根据等腰直角三角形的性质得出,又因为,于E,交的延长线于F即可得出结论解答:证明:,90,90,(直角三角形两个锐角互余)90,(等角的余角相等),90,在与中,()点评:本题主要考查了等腰直角三角形的性质及全等三角形的判定,难度适中3如图,点E在外部,点D在边上,交于点F,若1=2=3,试说明下列结论正确的理由:(1)E; (2)考点:全等三角形的判定;三角形内角和
5、定理。专题:证明题。分析:根据已知,利用有两组角对应相等的两个三角形相似得到,从而得到C,再由已知可得,又因为,所以根据可判定解答:解:(1)与中,2=3,E;(2)1=2,又E,点评:此题考查学生对相似三角形的判定及全等三角形的判定的理解及运用三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件4如图:,C求证:考点:全等三角形的判定。专题:证明题。分析:先证明得到,然后利用“边角边”证明和全等即可解答:证明:,即,在和中,()点评:本题考查了全等三角形的判定,根据
6、证明得到是解题的关键,也是本题的难点5如图,在中,D是的中点,连接,在的延长线上取一点E,连接,与全等吗?为什么?考点:全等三角形的判定;等腰三角形的性质。专题:证明题。分析:根据等腰三角形的性质推出,根据全等三角形的判定定理证出即可解答:答:与全等理由是:,D是的中点,在和中,即:与全等点评:本题主要考查对等腰三角形的性质,全等三角形的判定等知识点的理解和掌握,能推出证三角形全等的三个条件是解此题的关键6(2010顺义区)已知:如图,点D是的中点,平分,垂足为E求证:考点:直角三角形全等的判定;全等三角形的性质。专题:证明题。分析:求简单的线段相等,可证线段所在的三角形全等,结合本题,证即可
7、解答:证明:,点D是的中点,90,90,平分,1=2;在和中,(),点评:此题考查简单的线段相等,可以通过全等三角形来证明,要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件7(2010十堰)如图,中,求证:考点:直角三角形全等的判定;全等三角形的性质。专题:证明题。分析:欲证、两边相等,只需证明这两边所在的与全等,这两个三角形,有一对直角相等,公共角A,所以两三角形全等解答:证明:,90在和中,()点评:本题考查证明两边相等的方法,证明这两边所在的三角形全等选择要证的三角形时要结合图形及已知条件8(2008南宁)如图,在中
8、,D是的中点,垂足分别是E、F,(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明考点:直角三角形全等的判定。专题:证明题;开放型。分析:本题考查三角形的全等知识第(1)小题是根据对图形的直观判断和一定的推理可得结果,要求考虑问题要全面第(2)个问题具有一定的开放性,选择证明不同的结论,判定方法会有不同,这里根据(斜边直角边定理)来判断两个直角三角形全等解答:解:(1)3对分别是:;(2)证明:,90又D是的中点,在和中,()点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角
9、形全等的判定方法,看缺什么条件,再去证什么条件做题时要结合已知条件与全等的判定方法逐一验证9(2005新疆)在中,90,直线经过点C,且于D,于E,求证:考点:直角三角形全等的判定;全等三角形的性质。专题:证明题。分析:先证明,再证明,可得到,等量代换,可得出解答:证明:90,90,又,90,而90,(),又,点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:、证明两线段的和等于一条线段常常借助三角形全等来证明,要注意运用这种方法10如图,90,E是上的一点,且,1=2求证:考点:直角三角形全等的判定。专题:证明题。分析:此题比较简单,根据已知条件,利用直角三角形的特殊判定方
10、法可以证明题目结论解答:证明:1=2,90,90和是直角三角形,而点评:本题考查了直角三角形全等的判定及性质;主要利用了直角三角形全等的判定方法,也利用了等腰三角形的性质:等角对等边,做题时要综合利用这些知识11如图,在中,直线l经过顶点C,过A,B两点分别作l的垂线,E,F为垂足,求证:90考点:直角三角形全等的判定;全等三角形的性质。专题:证明题。分析:先利用定理证明和全等,再根据全等三角形对应角相等可以得到,因为90,所以90,根据平角定义可得90解答:证明:如图,在和中,(),90,90,18090=90点评:本题主要考查全等三角形的判定,全等三角形对应角相等的性质,熟练掌握性质是解题
11、的关键12(2002湛江)如图,有一池塘要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接并延长到D,使连接并延长到E,使连接,那么量出的长,就是A、B的距离请说明的长就是A、B的距离的理由考点:全等三角形的应用。专题:应用题。分析:本题的关键是设计三角形全等,巧妙地借助用证明,(其中两边已知,角为对顶角),寻找所求线段与已知线段之间的等量关系解答:解:与中,即的长就是A、B的距离点评:本题考查全等三角形的应用在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解13(2010广安)已知:如图,在矩形中,求
12、证:考点:全等三角形的判定与性质;矩形的性质。专题:证明题。分析:求简单的线段相等,可证线段所在的三角形全等,结合本题,证即可解答:证明:四边形是矩形,90;又,即,;()点评:此题考查简单的线段相等,可以通过全等三角形来证明,要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件14(2005三明)已知:如图,1=2,求证:3=4考点:全等三角形的判定与性质。专题:证明题。分析:要证3=4,只需利用全等三角形的判定()证即可解答:证明:1801,1802,1=2,在和中,3=4点评:三角形全等的判定是中考的热点,一般以考查三角
13、形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件15如图,和都是等腰直角三角形,与相交于点M,交于点N证明:(1);(2)考点:全等三角形的判定与性质;等腰直角三角形。专题:证明题。分析:(1)要证明,只要证明即可,两三角形中,已知的条件有,那么只要再得出两对应边的夹角相等即可得出三角形全等的结论我们发现和都是90加上一个,因此由此构成了两三角形全等中的()因此两三角形全等(2)要证,只要证明是个直角就行了由(1)得出的全等三角形我们可知:,三角形中,90,根据上面的相等角,我们可得出90,即90,因此就是
14、直角了解答:证明:(1)90即在和中()(2)9090即点评:本题考查了等腰直角三角形的性质,全等三角形的判定等知识点,利用全等三角形得出线段相等和角相等是解题的关键16如图所示,都是等边三角形,求证:考点:全等三角形的判定与性质;等边三角形的性质。专题:证明题。分析:要证线段相等,可以把这两条线段放到和中,考虑证明全等的条件根据判定全等后答案可得解答:证明:,都是等边三角形,60,即在和中,点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得是正确解答本题的关键菁优网 版权所有仅限于学习使用,不得用于任何商业用途11 / 11