《2022年二次函数复习全部讲义 .pdf》由会员分享,可在线阅读,更多相关《2022年二次函数复习全部讲义 .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品办公文档二次函数性质二次函数的图象与性质的是二次函数重点内容,而与二次函数的图象与性质密切相关,是图象的开口方向、对称轴、顶点坐标、增减范围、对称性。这些内容是中考二次函数重点考查内容,关于这些知识点的考查常以下面的题型出现。一、确定抛物线的开口方向、顶点坐标例 1、对于抛物线21(5)33yx,下列说法正确的是()A开口向下,顶点坐标(5 3),B开口向上,顶点坐标(5 3),C开口向下,顶点坐标(5 3),D开口向上,顶点坐标(5 3),二、求抛物线的对称轴例 2、二次函数322xxy的图象的对称轴是直线。三、求二次函数的最值例 3、若一次函数(1)ymxm的图像过第一、三、四象限,则
2、函数2ymxmx()A.有最大值4mB.有最大值4mC.有最小值4mD.有最小值4m四、根据图象判断系数的符号例 4、已知函数cbxaxy2的图象如图所示,则下列结论正确的是()Aa0,c0 B a0,c0 Ca0,c0 Da0,c0 五、比较函数值的大小例 5、若A(1,413y),B(2,45y),C(3,41y)为二次函数245yxx的图象上的三点,则1,y2,y3y的大小关系是()A123yyyB213yyy C 312yyyD132yyy六、二次函数的平移例 6、把抛物线2yx向左平移1个单位,然后向上平移3 个单位,则平移后抛物线的解析式为()A.2(1)3yx B.2(1)3yx
3、C.2(1)3yx D.2(1)3yx例 7 将抛物线23xy绕原点按顺时针方向旋转180后,再分别向下、向右平移1 个单位,此时该抛物线的解析式为()精品办公文档 A.1)1(32xy B.1)1(32xy C.1)1(32xy D.1)1(32xy例 8 在直角坐标平面内,二次函数图象的顶点为A(1,-4)且过 B(3,0).(1)求该二次函数解析式;(2)将该函数向右平移几个单位,可使得平移后所得图象经过原点,并直接写出平移后所得图象与 x 轴的另一个交点的坐标.(1)把二次函数2339424yxx代成2()ya xhk的形式(2)写出抛物线2339424yxx的顶点坐标和对称轴,并说明
4、该抛物线是由哪一条形如2yax的抛物线经过怎样的变换得到的?(3)如果抛物线2339424yxx中,x的取值范围是03x,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等)七、求代数式的值例 9、已知抛物线21yxx与x轴的一个交点为(0)m,则代数式22008mm的值为()A2006 B2007 C2008 D2009 八、求与坐标轴的交点坐标例 10、抛物线y=x2+x-4 与 y 轴的交点坐标为例 11、如图是二次函数2)1(2xay图像的一部分,该图在y轴右侧与x轴交点的坐标是。二次函数与一元二次方程二次函数与一元二次方程的关系十分密切,历来是数学中考的必考内
5、容之一。同学们应学会熟练地将这两部分知识相互转化。二次函数cbxaxy2与一元二次方程02cbxax从形式上看十分相似,两者之间既有联系又有区别。当抛物线cbxaxy2的 y 的值为 0 时,就得到一元二次方程02cbxax。抛物线与x 轴是否有交点就取决于一元二次方程02cbxax的根的情况。1.已知二次函数y=ax2+bx+c(a 0)的值等于m,求自变量x 的值,可以解一元二次方程ax2+bx+c=m(即ax2+bx+c-m=0).反 过 来,解 方 程ax2+bx+c=0(a 0)又 看 作 已 知 二 次 函 数y=ax2+bx+c 值为 0,求自变量x 的值.2.用表格给出二次函数
6、y=ax2+bx+c(a 0)与一元二次方程ax2+bx+c=0(a 0)的关系.文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文
7、档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5
8、文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T
9、5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10
10、T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N1
11、0T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N
12、10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1
13、N10T5精品办公文档一元二次方程ax2+bx+c=0 根的情况二 次 函 数y=ax2+bx+c与 x 轴的交点情况b2-4ac0 有两个不相等的根有两个不同的交点b2-4ac=0 有两相等的根只有惟一的一个交点b2-4ac0 无实数根无交点3 弦 长 公 式:如 果 抛 物 线)0(2acbxaxy的 图 象 与x 轴 有 两 个 交 点)0,(),0,(BAxx由一元二次方程求根公式得abxA2,abxB2,故aababxxABBA22这就是弦长公式,利用此公式可以解决许多有关抛物线的问题例 1.已知二次函数y=ax2+bx+c(a 0)的顶点坐标(-1,-3.2)及部分图象(如图1),
14、由图象可知关于x 的方程 ax2+bx+c=0 的两个根分别是x1=1.3 和 x2=_.例 2根据下列表格中二次函数2yaxbxc的自变量x与函数值y的对应值,判断方程20axbxc(0aabc,为常数)的一个解x的范围是()x6.17 6.18 6.19 6.20 2yaxbxc0.030.010.020.0466.17x6.176.18x6.186.19x6.196.20 x例 3 已知函数2yaxbxc的图象如图所示,那么关于x的方程220axbxc的根的情况是()A无实数根B有两个相等实数根C有两个异号实数根D有两个同号不等实数根例 4.已知抛物线mmxxy222的图象与x 轴有两个
15、交点为),0,(1x)0,(2x,且52221xx,求 m 的值。例已知二次函数22yxxm的部分图象如图所示,则关于x的一元二次方程220 xxm的解为图 1 文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码
16、:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编
17、码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档
18、编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文
19、档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5
20、文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T
21、5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10
22、T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5精品办公文档例二次函数2(0yaxbxc aabc,是常数)中,自变量x与函数y的对应值如下表:x1120121 322 523 y2141 742741 142(1)判断二次函数图象的开口方向,并写出它的顶点坐标(2)一元二次方程20(0axbxcaabc,是常数)的两个根12xx,的取值范围是下列选项中的哪一个12130222xx,12151222xx,12150 222xx,121 3122 2xx,例 4(贵阳)二次函数2(0)yaxbxc a的图象如图所示,根据图象解答下列问题:(1)写出方程2
23、0axbxc的两个根(2)写出不等式20axbxc的解集(3)写出y随x的增大而减小的自变量x的取值范围(4)若方程2axbxck有两个不相等的实数根,求k的取值范围例如图 3,一元二次方程x2+2x-3=0 的二根 x1,x2(x1x2)是抛物线y=ax2+bx+c 与 x 轴的两个交点B,C 的横坐标,且此抛物线过点A(3,6)求此二次函数的表达式二次函数的应用中考命题中,既重点考查二次函数及其图象的有关基础知识,同时以二次函数为背景的应用性问题也是命题热点之一,多数作压轴题。因此,在复习中,关注这一热点显得十分重要。应用二次函数,就是要把实际问题转化为二次函数的问题,它的基本模式是:xy
24、3322114112O图 3 实际问题数学化数学问题实际问题的解检验数学问题的解文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档
25、编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文
26、档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5
27、文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T
28、5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10
29、T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N1
30、0T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N
31、10T5精品办公文档同学们难的是,如何把实际问题数学化。我们要细心研究题意,能提炼出相关信息,对相关信息进行分析、加工,看能不能形成抛物线的形式。从而把实际问题转化为数学问题。例 1、(某宾馆客房部有60 个房间供游客居住,当每个房间的定价为每天200 元时,房间可以住满当每个房间每天的定价每增加10 元时,就会有一个房间空闲对有游客入住的房间,宾馆需对每个房间每天支出20 元的各种费用设每个房间每天的定价增加x元求:(1)房间每天的入住量y(间)关于x(元)的函数关系式(3 分)(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式(3 分)(3)该宾馆客房部每天的利润w(元)关于x(元
32、)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?(6 分)解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,?“某某”要设为自变量,“什么”要设为函数;(2)?问的求解依靠配方法或最值公式,而不是解方程。例 2、一家电脑公司推出一款新型电脑,投放市场以来3 个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,请结合图象,解答以下问题:(1)求该抛物线对应的二次函数解析式(2)该公司在经营此款电脑过程中,第几月的利润最大?最大利润是多少?(3)若照此经营下去,请你结合所学的知识,对
33、公司在此款电脑的经营状况(是否亏损?何时亏损?)作预测分析。例 3、某人定制了一批地砖,每块地砖(如图 1(1)所示)是边长为0.4 米的正方形ABCD,点 E、F 分别在边 BC 和 CD 上,CFE、ABE 和四边形AEFD均由单一材料制成,制成CFE、ABE 和四边形AEFD 的三种材料的每平方米价格依次为30 元、20元、10 元,若将此种地砖按图1(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E、F 在什么位置时,定制这批地砖所需的材料费用最省?例 4 为了改善小区环境,某小区决定要在一块一边靠墙(墙长 2
34、5m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图1).若设绿化带的BC边长为 xm,绿化带的面积为ym2.(1)求 y 与 x 之间的函数关系式,并写出自变量x 的取值范围;(2)当 x 为何值时,满足条件的绿化带的面积最大?O 13 24 33 y x 第 1 月 第 2 月第 3 月利润(万元)图 1(2)A D F B E C(1)E F G H A B D C 图 1 25m D C B A 文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ
35、10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 Z
36、Z10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4
37、ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4
38、 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L
39、4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4
40、L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N
41、4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5精品办公文档例 5 用长为 l2 m 的篱笆,一边利用足够长的墙围出一块苗圃如图 2,围出的苗圃是五边形 ABCDE,AE AB,BC AB,C=D=E 设 CD=DE=xm,五边形 ABCDE 的面积为S m2问当 x
42、取什么值时,S最大?并求出 S的最大值例 6 如图 3,抛物线9222nnxxy(n 为常数)经过坐标原点和 x 轴上另一点C,顶点在第一象限(1)确定抛物线所对应的函数关系式,并写出顶点坐标;(2)已知 A点坐标为(2,8),在梯形 OABC 内有一矩形MNPQ,点 M、N分别在 OA、BC上,点 Q、P在 x 轴上当 MN为多少时,矩形 MNPQ 的面积最大?最大面积是多少?例7 已知:如图4,直角梯形ABCD中,ADBC,90A,10BCCD,4sin5C(1)求梯形ABCD的面积;(2)点EF,分别是BCCD,上的动点,点E从点B出发向点C运动,点F从点C出发向点D运动,若两点均以每秒
43、1 个单位的速度同时出发,连接EF求EFC面积的最大值,并说明此时EF,的位置例 8如图 5,ABCD中,4AB,3BC,120BAD,E为BC上一动点(不与B重合),作EFAB于F,FE,DC的延长线交于点G,设BEx,DEF的面积为S(1)求证:BEFCEG;(2)求用x表示S的函数表达式,并写出x的取值范围;(3)当E运动到何处时,S有最大值,最大值为多少?例军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度(m)y与飞行时间(s)x的关系满足21105yxx 经过秒时间炮弹到达它的最高点,最高点的高度是米,经过秒时间,炮弹落到地上爆炸了例 10 如图 1,一位运动员在距篮圈
44、中心水平距离4 米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5 米时,达到最大高度3.5 米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05 米求抛物线的关系式例 11 如图 2,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同正常水位时,大孔水面宽度AB20 米,顶点 M 距水面 6 米(即MO6 米),小孔顶点N 距水面4.5 米(NC4.5 米)当水位上涨刚好淹没小孔时,借助图 3 中的直角坐标系,求此时大孔的水面宽度EF图 2 yA M O Q H B N P C x图 3 图 4 ABCDEFNMACBDEFG图 2 图 3 图 1 图 5 文档编码:CI
45、4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:C
46、I4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:
47、CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码
48、:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编
49、码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档
50、编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文档编码:CI4B3T3P10I8 HQ8Y8I3N4L4 ZZ10X7R1N10T5文