《最新大学高等数学经典课件8-7PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新大学高等数学经典课件8-7PPT课件.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、大学高等数学经典课件大学高等数学经典课件8-78-7 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系设L是xoy平面上以p0(x0,y0)为始点的一条线,el=(cos,cos)是与L同方向的单位向量.射线l的参数方程为设函数z=f(x,y)在点如的距离内有定的某个邻域义,为L上另一点,且果函数增量与P到的比值 当P沿L趋于(即t0+)时的极限 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数
2、学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系例2 求f(x,y,z)=xy+yz+zx在点(1,1,2)沿方向l的方向导数,其中L的方向角分别为600,450,600.解:与l的方向相同的单位向量 el=(cos600,cos450,cos600)=因为函数可微分,且由公式(4)高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系二二.梯度梯度 与方
3、向导数有关系的一个概念是梯度.在二元函数的情形,设函数f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一点p0(x0,y0)D,都可定出一个向量 fx(x0,y0)i+fy(x0,y0)j 这个向量称为函数f(x,y)在点p0(x0,y0)的梯度,记作grad f(x0,y0),即 grad f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j 如果函数f(x,y)在点p0(x0,y0)可微分,eL=(cos,cos)是与方向L同向的单位向量,则 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系其中=(gradf(x0,y0),el)是 与gradf()的夹
4、角的夹角=0,即沿梯度方向时即沿梯度方向时,方向导数得到最大值方向导数得到最大值,这个最这个最大值就是梯度的模大值就是梯度的模这关系式表示函数在一点的梯度与函数在这点的方向导数之间的关系.高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系这说明函数在一点的梯度是个向量,它的方向是函数在这点的方向导数取得最大值的方向,它的模等于方向导数的最大值.Z=c(c是常数)所截得的曲线L的方程为 z=f(x,y)z=c.这条曲线L在xoy面上的投影是一条平面曲线L*,它在xoy平面直角坐标系中的方程为 f(x,y)=c 对于曲线L*上的一切点,已给函数的函数值都是c,所以我们称平面曲线
5、L*为函数z=f(x,y)的等值线.高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系若fx,fy不同时为零,则等值线f(x,y)=c上任一点P0(x0,y0)处的一个单位法向量为gradf(x,y)f(x,y)=cf(x,y)=c2f(x,y)=c1L*xy 这表明梯度grad f(x0,y0)的方向与等值线上这一点的一个法线方向相同,而沿 这个方向的方向导数等于该点的梯度,即 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 这关系式表示函数在一点的梯度方向与等值线在这一点的一个法线方向相同,它的指向为数值较低的等值线指向高的等值线,梯度的模等于函
6、数在这个法线方向的方向模等于函数导数.高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 对于三元函数的梯度概念是设函数f(x,y,z)在空间区域G内具有一阶连续 偏导数,则对于每一点P0(x0,y0,z0)G,都可确定一向量 fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k 这向量称为函数f(x,y,z)在点P0(x0,y0,z0)的梯度,把它记作grad f(x0,y0,z0),即 grad f(x0,y0,z0)=fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k 高高等等数数学学电电子子教教案案 武武
7、汉汉科科技技学学院院数数理理系系三元函数的梯度同二元函数一样:它的方向与取得最大方向导数的方向一致,它的模为方向导数的最大值.如果我们引进曲面f(x,y,z)=c 为函数f(x,y,z)的等量面的概念,则可得f(x,y,z)在点P0(x0,y0,z0)的梯度方向与过点P0的等量面f(x,y,z)=c 在这点的法线的一个方向相同,它的指向为从数值较低的指向数值高的等量面,而梯度的模等于函数在这个法线方向的方向导数.高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系解:例5 设f(x,y,z)=x2+y2+z2,求gradf(1,-1,2)解:gradf=(fx,fy,fz)=
8、(2x,2y,2z)所以 gradf(1,-1,2)=(2,-2,4)例4 求 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系下面我们介绍数量场与向量场的概念.如果对于空间区域G内的任一点M,都有一个确定的数量f(M),则称在这空间区域G内确定了一个数量场(例如温度场,密度场)一个数量场可用一个数量函数f(M)确定.如果与点M相对应的是一个向量F(M),则称
9、在这空间区域G内确定了一个向量场(例如引力场,速度场)一个向量场可一个向量值函数F(M)来确定,F(M)=P(M)I+Q(M)j+R(M)k其中P(M),Q(M),R(M)是点M的数量函数.高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系利用场的概念,我们说向量函数gradf(M)确定了一个向量场-梯度场,它是由数量场f(M)产生的,通常称函数f(M)为这个向量场的势,而这个向量场又称为势场.必须注意,任意一个向量场不一定是势场,因为它不一定是某个数量函数的梯度场.例8 试求数量场m/r所产生的梯度场,其中常数m0,解:为原点O与点M(x,y,z)之间的距离.高高等等数数学学电电子子教教案案 武武汉汉科科技技学学院院数数理理系系 上式右端在力学上认为,位于原点O而质量为m的质点对位于点M而质量为1的质点的引力.这引力的大小与两质点的质量的乘积成正比,而与它的距离平方成反比,这引力的方向由点M指向原点.因此数量场m/r的势场即梯度场gradm/r称为引力场,而函数m/r称为引力势.