《初二数学第一次月考试卷及答案.doc》由会员分享,可在线阅读,更多相关《初二数学第一次月考试卷及答案.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学校 班级 姓名 考号 -密-封-线- 20112012学年度第一学期八年级数学阶段测试卷真情提示:亲爱的同学,细心、耐心、信心是答题成功必备的心理素质!一、选择题(3分8=24分)1.以下五家银行行标中,轴对称图形的有 ( ) A1个 B2个 C3个 D4个2.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( ) ABCD 3. 关于等边三角形的说法:(1)等边三角形有三条对称轴;(2)有一个角等于60的等腰三角形是等边三角形;(3)有两个角等于60 ( ) 4.如图,BAC=1000,MN、EF分别垂直平分AB、AC,则MAE的大小为 ( )A. 800 B. 200 C.
2、500 D. 1005. 在梯形ABCD中,ADBC现给出条件:A=B;A+C=180;A=D其中能用来说明这个梯形是等腰梯形的是: ( )A或或 B或 C或 D或(第8题)(第4题)6.已知AOB=30,点P在AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点构成的三角形是 ( )7. 以下列数组为三角形的边长,其中能构成直角三角形的是( )A1,1,2 B, , C0.2,0.3,0.5 D 8. 如图的方格纸中,每一个小方格都是边长为1的正方形,找出格点C,使ABC的等腰三角形,这样的格点C的个数有 ( )A. 8个 B. 9个 C. 10个 D. 11个二、填
3、空题(每空2分,共22分) 9(1)若等腰三角形的周长为10,底边长为4,则腰长为 ; (2)若等腰三角形的两边长为6和4,则等腰三角形的周长为 . 10(1)若等腰三角形的一个角为100,则底角为 . (2)若ABC为等腰三角形,A=40,B= _ .11. 如图,ABC中,DE垂直平分AC交AB于E,A=30,ACB=80,则BCE= .(第12题)(第11题)12 如图,RtABC中,B90,AB3cm,AC5cm,将ABC折叠,使点C与A重合,得折痕DE,则ABE的周长等于_cm.13.(1)一个三角形三边为3,4,5,此三角形的面积为_. (2)一个直角三角形的两条直角边长为5cm、
4、12cm,则斜边上的中线为 ;14.如图,ABC中,DEAB,,BF平分ABC,交DE于点F,若BC6,则DF的长是_。15.如图,在ABC中,CFAB于F,BEAC于E,M为BC的中点,EF=5,BC=8,则EFM的周长是 。16. 如图,在直线上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1.0,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+S2+S3+S4= (第15题)(第16题)(第14题)三画图题(9分+7分=16分)17. 如图,在的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形
5、,如图中的三角形是格点三角形(1)请你在图中画一条直线将格点三角形分割成两部分,将这两部分重新拼成三个不同的格点四边形,并将三个格点四边形分别画在图,图,图中;并判断是否为轴对称图形。(2)直接写出这三个格点四边形的周长。(本题满分9分)图图图图18.如图是每一个小方格都是边长为1的正方形网格,(1)利用网格线作图:在BC上找一点P,使点P到AB和AC的距离相等;在射线AP上找一点Q,使QB=QC.(2)在(1)中连接CQ与BQ,试说明CQBQ. 四解答题(6分+6分+6分+8分+12分=38分)19. 已知:如图,AD为BAC的平分线,且DFAC于F,B90,DEDC。试问 BE与CF的关系
6、,并加以说明。 20. 如图,在ABC中,AB=A C,点D在AC上,且AD=BD(1)找出图中相等的角并说明理由 (2)若增加条件AC=DC,求C的度数。21. 如图所示,在梯形ABCD中,已知ADBC,AB=DC,ACB=40,ACD=30(1)BAC= ;(2)如果BC=5cm,连接BD,求AC、BD的长度22. 如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C的位置上(1)折叠后,DC的对应线段是 ,CF的对应线段是 ; (2)若1=50,求2、3的度数;BEF为_三角形。 (3)若AB=7,DE=8,求CF的长度 23. 某研究性学习小组在探究矩形的折纸问题时
7、,将一块直角三角板的直角顶点绕着直角三角形DBC(DCBC)的对角线交点O旋转(如图),图中M、N分别为直角三角板的直角边与三角形DBC的边CD、BC的交点. (1)我们知道,矩形是轴对称图形,请说出它的对称轴条数和对称轴,根据对称性,试问OA、OB、OC、OD有何数量关系。(2)该学习小组中一名成员意外地发现:连接 DN,发现BND为特殊的三角形,试问此三角形是何特殊的三角形?并加以说明。(3)在图(三角板的一直角边与OD重合)中试问BN、CN、DC的关系并说明理由.(4)试探究图中BN、CN、CM、DM这四条线段之间的数量关系,请你用一等式在横线上直接表示出探究的结论: .(不需要说明理由)注意:所有答案必须写在答题纸上.