《第一章集合教案 .doc》由会员分享,可在线阅读,更多相关《第一章集合教案 .doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章 集合与函数概念1.1集合 1.1.1 集合的含义及其表示1集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set)。集合常用大写的拉丁字母来表示,如集合A、集合B集合中的每一个对象称为该集合的元素(element),简称元。集合的元素常用小写的拉丁字母来表示。如a、b、c、p、q2关于集合的元素的特征(1)确定性:(2)互异性:(3)无序性:3集合元素与集合的关系用“属于”和“不属于”表示;(1)如果是集合的元素,就说属于,记作(2)如果不是集合的元素,就说不属于,记作 (“”的开口方向,不能把aA颠倒过来写)5常用数集的记法:(1)非负整数集(自然数集):全体
2、非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+ (3)整数集:全体整数的集合记作Z , (4)有理数集:全体有理数的集合记作Q , (5)实数集:全体实数的集合记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N*或N+。6集合的表示方法:集合的表示方法,常用的有列举法和描述法(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;各元素之间用逗号分开。(2)描述法:把集合中的所有元素都具有的性质(满足的条件)表示出来,写成的形式。(3)韦恩(
3、Venn)图示意7两个集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等。1.1集合 1.1.2集合间的基本关系【学习目标】1.理解集合之间的包含与相等的含义,能识别给定集合的子集;2.在具体情境中,了解全集与空集的含义.【预习指导】1.集合间有几种基本关系?2.集合的基本关系分别用哪些符号表示?怎样用enn图来表示?3.什么叫空集?它有什么特殊规定?4.集合之间关系的性质有哪些?【课堂探究】一、问题1我们知道实数有大、小或相等的关系,哪么集合间是不是也有类似的关系呢?.设集合为高一()班全体女生组成的集合,集合为这个班全体学生组成的集合.设.观察上面的例子,指出给定两个集合中的元素
4、有什么关系?对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系则称集合A为集合B的子集.我们已经知道元素与集合的关系用 表示,那么集合A是B的子集如何表示呢? (或 ),读作:“A含于B”(或“B包含A”)其中:“A含于B”中的于是被的意思,简单地说就是A被B包含.“”类似于“”开口朝向谁谁就“大”.在数学中,除了用列举法、描述法来表示集合之外,我们还有一种更简洁、直观的方法用平面上的封闭曲线的内部来表示集合venn(韦恩)图.那么,集合A是集合B的子集用图形表示如下:AB问题2上面的各对集合中,有没有包含关系? 集合相等思考:上述各组集合中,集合A是
5、集合B的子集吗?集合B是集合A的子集吗?对于实数,如果且,则 与的大小关系如何?用子集的观点,仿照上面的结论在什么条件下A=B问题3 若,则集合A与B一定相等吗? 若,则可能有A=B,也可能.当 ,且时,我们如何进行数学解释? 如果 ,但存在元素且 ,则 称集合A是集合B的真子集. A B(或B A) A = B A B问题4:(1) (2)上述两个集合有何共同特点? 集合中没有元素 ,我们就把上述集合称为空集不含任何元素的集合叫做空集,记为,规定:空集是任何集合的子集 空集与集合0相等吗? 0空集是任何非空集合的真子集通过前面的学习我们可以知道:1) 任何集合是它本身的 子集2) 对于集合A
6、,B,C,如果,且,那么例题:写出集合a,b,c的所有子集并指出,真子集、非空真子集. 解:集合a,b,c子集: 规律总结:有n个元素的集合,含有2n个子集,2n-1个真子集,2n-1个非空子集,n个元素的非空真子集有2n2个。,a,b,c,a,b,a,c,b,c,a,b,c 集合a,b,c真子集,a,b,c,a,b,a,c,b,c集合a,b,c的非空真子集a,b,c,a,b,a,c,b,c【典型例题】:1. 写出下列各集合的子集及其个数2.设集合,若MN,求的取值范围.3.已知含有个元素的集合,若,求的值.4.已知集合,且,求实数m的取值范围.1.1集合 1.1.3集合的基本运算教学目的:(
7、1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。教学重点:集合的交集与并集、补集的概念; 教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;【知识点】1. 并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:AB读作:“A并B”即: AB=x|xA,或xBVenn图表示: ABABA?说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看
8、成一个元素)。说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。2. 交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。记作:AB读作:“A交B”即: AB=x|A,且xB交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。拓展:求下列各图中集合A与B的并集与交集A BA(B)AB BAB A说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两
9、个集合没有交集3. 补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,记作:CUA即:CUA=x|xU且xA补集的Venn图表示说明:补集的概念必须要有全集的限制4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而
10、用集合语言表达,增强数形结合的思想方法。5. 集合基本运算的一些结论:ABA,ABB,AA=A,A=,AB=BAAAB,BAB,AA=A,A=A,AB=BA(CUA)A=U,(CUA)A= 若AB=A,则AB,反之也成立若AB=B,则AB,反之也成立AB-1359x若x(AB),则xA且xB若x(AB),则xA,或xB例题精讲:【例1】设集合.解:在数轴上表示出集合A、B,如右图所示:, ,【例2】设,求:(1); (2).解:.(1)又,;(2)又,得. .【例3】已知集合,且,求实数m的取值范围.-2 4 m xB A 4 m x解:由,可得.在数轴上表示集合A与集合B,如右图所示:由图形可知,.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集,求, ,并比较它们的关系. 解:由,则. 由,则 由,则,.由计算结果可以知道,.点评:可用Venn图研究与 ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.