《(完整word版)高中数学导数及其应用.pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中数学导数及其应用.pdf(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学导数及其应用一、知识网络二、高考考点1、导数定义的认知与应用;2、求导公式与运算法则的运用;3、导数的几何意义;4、导数在研究函数单调性上的应用;5、导数在寻求函数的极值或最值的应用;6、导数在解决实际问题中的应用。三、知识要点(一)导数1、导数的概念(1)导数的定义()设函数在点及其附近有定义,当自变量x 在处有增量 x(x 可正可负),则函数y 相应地有增量,这两个增量的比,叫做函数在点到这间的平均变化率。如果时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作,即。()如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一
2、个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即。认知:()函数的导数是以 x 为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。()求函数在点处的导数的三部曲:求函数的增量;求平均变化率;文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8
3、E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码
4、:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8
5、E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码
6、:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8
7、E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码
8、:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2文档编码:CR1Y7N1G1W6 HG5C7R8E8N5 ZZ2V2N5Y7Z2求极限上述三部曲可简记为一差、二比、三极限。(2
9、)导数的几何意义:函数在点处的导数,是曲线在点处的切线的斜率。(3)函数的可导与连续的关系函数的可导与连续既有联系又有区别:()若函数在点处可导,则在点处连续;若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。事实上,若函数在点处可导,则有此时,记,则有即在点处连续。()若函数在点处连续,但在点处不一定可导(连续不一定可导)。反例:在点处连续,但在点处无导数。事实上,在点处的增量文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9
10、K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10
11、L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:
12、CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 H
13、K9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN
14、10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编
15、码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1
16、 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8当时,;当时,由此可知,不存在,故在点处不可导。2、求导公式与求导运算法则(1)基本函数的导数(求导公式)公式 1 常数的导数:(c 为常数),即常数的导数等于0。公式 2 幂函数的导数:。公式 3 正弦函数的导数:。公式 4 余弦函数的导数:公式 5 对数函数的导数:();()公式 6 指数函数的导数:();()。(2)可导函数四则运算的求导法则设为可导函数,则有法则 1;文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码
17、:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1
18、HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 Z
19、N10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档
20、编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N
21、1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1
22、 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8
23、文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8法则 2;法则 3。3、复合函数的导数(1)复合函数的求导法则设,复合成以x 为自变量的函数,则复合函数对自变量x 的导数,等于已知函数对中间变量的导数,乘以中间变量u 对自变量 x 的导数,即。引申:设,复合成函数,则有(2)认知()认知复合函数的复合关系循着“由表及里”的顺序,即从外向内分析:首先由最外层的主体函数结构设出,由第一层中间变量的函数结
24、构设出,由第二层中间变量的函数结构设出,由此一层一层分析,一直到最里层的中间变量为自变量x 的简单函数为止。于是所给函数便“分解”为若干相互联系的简单函数的链条:;()运用上述法则求复合函数导数的解题思路分解:分析所给函数的复合关系,适当选定中间变量,将所给函数“分解”为相互联系的若干简单函数;求导:明确每一步是哪一变量对哪一变量求导之后,运用上述求导法则和基本公式求;还原:将上述求导后所得结果中的中间变量还原为自变量的函数,并作以适当化简或整理。文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10
25、L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:
26、CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 H
27、K9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN
28、10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编
29、码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1
30、 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1
31、ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8二、导数的应用1、函数的单调性(1)导数的符号与函数的单调性:一般地,设函数在某个区间内可导,则若为增函数;若为减函数;若在某个区间内恒有,则在这一区间上为常函数。(2)利用导数求函数单调性的步骤()确定函数的定义域;()求导数;()令,解出相应的x 的范围当时,在相应区间上为增函数;当时在相应区间上为减函数。(3)强调与认知()利用导数讨论函数的单调区间,首先要确定函数的定义域D,并且解决问题的过程中始终立
32、足于定义域D。若由不等式确定的 x 的取值集合为A,由确定的 x的取值范围为B,则应用;()在某一区间内(或)是函数在这一区间上为增(或减)函数的充分(不必要)条件。因此方程的根不一定是增、减区间的分界点,并且在对函数划分单调区间时,除去确定的根之外,还要注意在定义域内的不连续点和不可导点,它们也可能是增、减区间的分界点。举例:(1)是 R上的可导函数,也是R上的单调函数,但是当x=0 时,。(2)在点 x=0 处连续,点x=0 处不可导,但在(-,0)内递减,在(0,+)内递增。文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1
33、 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1
34、ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文
35、档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6
36、N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B
37、1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O
38、8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8
39、S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O82、函数的极值(1)函数的极值的定义设函数在点附近有定义,如果对附近的所有点,都有,则说是函数的一个极大值,记作;如果对附近的所有点,都有,则说是函数的一个极小值,记作。极大值与极小值统称极值认知:由函数的极值定义可知:()函数的极值点是区间内部的点,并且函数的极值只有在区间内的连续点处取得;()极值是一个局部性概念;一个函数在其定义域内可以有多个极大值和极小值,并且在某一点
40、的极小值有可能大于另一点处的极大值;()当函数在区间上连续且有有限个极值点时,函数在内的极大值点,极小值点交替出现。(2)函数的极值的判定设函数可导,且在点处连续,判定是极大(小)值的方法是()如果在点附近的左侧,右侧,则为极大值;()如果在点附近的左侧,右侧,则为极小值;注意:导数为0 的不一定是极值点,我们不难从函数的导数研究中悟出这一点。(3)探求函数极值的步骤:()求导数;()求方程的实根及不存在的点;文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y
41、8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8
42、O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8
43、A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z
44、3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6
45、P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6
46、K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU
47、2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8考察在上述方程的根以及不存在的点左右两侧的符号:若左正右负,则在这一点取得极大值,若左负右正,则在这一点取得极小值。3、函数的最大值与最小值(1)定理若函数在闭区间上连续,则在上必有最大值和最小值;在开区间内连续的函数不一定有最大值与最小值。认知:()函数的最值(最大值与最小值)是函数的整体性概念:最大值是函数在整个定义区间上所有函数值中的最大值;最小值是函数在整个定义区间上所有函数值中的最小值。()函数的极大值与极小值是比较极值点附近的函数值得
48、出的(具有相对性),极值只能在区间内点取得;函数的最大值与最小值是比较整个定义区间上的函数值得出的(具有绝对性),最大(小)值可能是某个极大(小)值,也可能是区间端点处的函数值。()若在开区间内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值。(2)探求步骤:设函数在上连续,在内可导,则探求函数在上的最大值与最小值的步骤如下:(I)求在内的极值;(II)求在定义区间端点处的函数值,;(III)将的各极值与,比较,其中最大者为所求最大值,最小者为所求最小值。引申:若函数在上连续,则的极值或最值也可能在不可导的点处取得。对此,如果仅仅是求函数的最值,则可将上述步骤简化:(I)求出的
49、导数为 0 的点及导数不存在的点(这两种点称为可疑点);文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1
50、B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3O8文档编码:CU2Z3Y8S6N1 HK9K6P8O1B1 ZN10L6K8A3