《(完整word版)高考文科数学数列复习题.pdf》由会员分享,可在线阅读,更多相关《(完整word版)高考文科数学数列复习题.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-来源网络,仅供参考高考文科数学数列复习题一、选择题1已知等差数列共有10 项,其中奇数项之和15,偶数项之和为30,则其公差是()A5 B4 C3 D2 2在等差数列na中,已知1232,13,aaa则456aaa等于()A40 B 42 C43 D 45 3已知等差数列na的公差为2,若1a、3a、4a成等比数列,则2a等于()A 4 B 6 C 8 D 10 4.在等差数列na中,已知11253,4,33,naaaan则 为()A.48 B.49 C.50 D.51 5在等比数列na 中,2a 8,6a64,则公比q为()A2 B3 C4 D8 6.-1,a,b,c,-9成等比数列,那么
2、()A3,9bac B.3,9bac C.3,9bac D.3,9bac7数列na满足11,(2),nnna aan na则()A(1)2n n B.(1)2n n C.(2)(1)2nn D.(1)(1)2nn8已知abcd,成等比数列,且曲线223yxx的顶点是()bc,则ad等于(3 2 1 29在等比数列na中,12a,前n项和为nS,若数列1na也是等比数列,则nS等于()A122nB3nC2nD31n10设4710310()22222()nf nnN,则()f n等于()A2(81)7nB12(81)7n C 32(81)7nD42(81)7n二、填空题(5 分 4=20 分)11
3、.已知数列的通项52nan,则其前n项和nS12已知数列na对于任意*pqN,有pqpqaaa,若119a,则36a13数列an中,若a1=1,2an+1=2an+3(n1),则该数列的通项an=.14已知数列na是首项为1,公差为 2 的等差数列,将数列na中的各项排成如图所示的一个三角形数表,记A(i,j)表示第 i 行从左至右的第j 个数,例如A(4,3)=9a,则 A(10,2)=三、解答题(本大题共6 题,共 80 分,解答应写出文字说明、证明过程或演算步骤)15、(本小题满分12 分)等差数列的通项为219nan,前 n 项和记为ns,求下列问题:(1)求前 n 的和ns(2)当
4、n 是什么值时,ns有最小值,最小值是多少?16、(本小题满分12 分)-来源网络,仅供参考数列na的前n项和记为nS,111,211nnaaSn(1)求na的通项公式;(2)求nS17、(本小题满分14 分)已知实数列是na等比数列,其中74561,1,aaaa且成等差数列.(1)求数列na的通项公式;(2)数列na的前n项和记为,nS证明:nS128,3,2,1(n).18、(本小题满分14 分)数列na中,12a,1nnaacn(c是常数,12 3n,),且123aaa,成公比不为1的等比数列(1)求c的值;(2)求na的通项公式19、(本小题满分14 分)设na是等差数列,nb是各项都
5、为正数的等比数列,且111ab,3521ab,5313ab(1)求na,nb的通项公式;(2)求数列nnab的前n项和nS20(本小题满分14 分)设数列na满足211233333nnnaaaa,a*N(1)求数列na的通项;(2)设nnnba,求数列nb的前n项和nS1.(本题满分14 分)设数列na的前n项和为nS,且34nnaS(1,2,)n,(1)证明:数列na是等比数列;(2)若数列nb满足1(1,2,)nnnbabn,12b,求数列nb的通项公式2.(本小题满分12 分)等比数列na的各项均为正数,且212326231,9.aaaa a1.求数列na的通项公式.2.设31323lo
6、glog.log,nnbaaa求数列1nb的前项和.3.设数列na满足21112,3 2nnnaaa(1)求数列na的通项公式;(2)令nnbna,求数列的前n 项和nS文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:
7、CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C
8、10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4
9、 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4
10、F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6
11、 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D1
12、0E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C
13、8-来源网络,仅供参考4.已知等差数列an 的前 3 项和为 6,前 8 项和为 4()求数列an 的通项公式;()设bn=(4an)qn1(q0,nN*),求数列 bn 的前 n 项和 Sn5.已知数列 an 满足,nN(1)令 bn=an+1an,证明:bn 是等比数列;(2)求 an 的通项公式高三文科数学数列测试题答案15 CBBCA 610 BABCD 11.(51)2nn 12.4 13.3122nan 14.93 15.略解(1)略(2)由100nnaa得10n,10 910210(17)2260s16.解:(1)设等比数列na的公比为()q qR,由6711aa q,得61aq
14、,从而3341aa qq,4251aa qq,5161aa qq因为4561aaa,成等差数列,所以4652(1)aaa,即3122(1)qqq,122(1)2(1)qqq所以12q故116111642nnnnaa qqq(2)1164 12(1)1128 112811212nnnnaqSq17(1)由121nnaS可得1212nnaSn,两式相减得112,32nnnnnaaaaan又21213aS213aa故an是首项为1,公比为3 得等比数列13nna.(2)1(1 3)311 322nnnS18.解:(1)12a,22ac,323ac,因为1a,2a,3a成等比数列,所以2(2)2(23
15、)cc,解得0c或2c当0c时,123aaa,不符合题意舍去,故2c(2)当2n时,由于21aac,322aac,1(1)nnaanc,所以1(1)12(1)2nn naancc又12a,2c,故22(1)2(2 3)nan nnnn,当1n时,上式也成立,所以22(1 2)nannn,文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6
16、ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10
17、E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8
18、文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:C
19、K5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C1
20、0N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4
21、HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F
22、4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8-来源网络,仅供参考19.解:(1)设na的公差为d,nb的公比为q,则依题意有0q且4212211413dqdq,解得2d,2q所以1(1)21nandn,112nnnbq(2)1212nnnanb122135232112222nnnnnS,3252321223222nnnnnS,得22122221222222nnnnS,1111212221212nnn12362nn20(1)2112333.3,3nnnaaaa1.解:(1)证:因为34nnaS(1,2,)n,则3411n
23、naS(2,3,)n,所以当2n时,1144nnnnnaSSaa,整理得143nnaa 5分由34nnaS,令1n,得3411aa,解得11a所以na是首项为1,公比为43的等比数列 7分(2)解:因为14()3nna,由1(1,2,)nnnbabn,得114()3nnnbb 9分由累加得)()()(1231 21nnnbbbbbbbb1)34(3341)34(1211nn,(2n),当 n=1 时也满足,所以1)34(31nnb2.解:()设数列an 的公比为q,由23269aa a得32349aa所以219q。有条件可知a0,故13q。由12231aa得12231aa q,所以113a。故
24、数列 an 的通项式为an=13n。文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6
25、ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10
26、E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8
27、文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:C
28、K5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C1
29、0N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4
30、HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8-来源网络,仅供参考(?)111111loglog.lognbaaa故12112()(1)1nbn nnn所以数列1nb的前 n 项
31、和为21nn3.解:()由已知,当n1 时,2(1)12n。而12,a所以数列 na的通项公式为212nna。()由212nnnbnan知35211 22 23 22nnSn从而23572121 22 23 22nnSn-得2352121(12)22222nnnSn。即211(31)229nnSn4.解:(1)设 an的公差为d,由已知得解得 a1=3,d=1 故 an=3+(n1)(1)=4n;(2)由(1)的解答得,bn=n?qn 1,于是Sn=1?q0+2?q1+3?q2+(n1)?qn1+n?qn若 q1,将上式两边同乘以q,得qSn=1?q1+2?q2+3?q3+(n1)?qn+n?
32、qn+1将上面两式相减得到(q1)Sn=nqn(1+q+q2+qn 1)=nqn文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5
33、Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N
34、9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB
35、8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z
36、5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM
37、7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9
38、M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8-来源网络,仅供参考于是 Sn=若 q=1,则 Sn=1+2+3+n=所以,Sn=5.解
39、:(1)证 b1=a2a1=1,当 n2 时,所以 bn 是以 1 为首项,为公比的等比数列(2)解由(1)知,当 n2 时,an=a1+(a2a1)+(a3a2)+(anan 1)=1+1+()+=,当 n=1 时,所以文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8
40、Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5
41、E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7
42、D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M
43、1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编
44、码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z
45、8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8文档编码:CK5Z8C10N9A4 HB8Y4F4Z5E6 ZM7D10E9M1C8