《(完整word版)高考导数专题复习.pdf》由会员分享,可在线阅读,更多相关《(完整word版)高考导数专题复习.pdf(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 1 页 共 21 页高考数学专题复习导数目录一、有关切线的相关问题二、导数单调性、极值、最值的直接应用三、交点与根的分布1、判断零点个数2、已知零点个数求解参数范围四、不等式证明1、作差证明不等式2、变形构造函数证明不等式3、替换构造不等式证明不等式五、不等式恒成立求参数范围1、恒成立之最值的直接应用2、恒成立之分离常数3、恒成立之讨论参数范围六、函数与导数性质的综合运用第 2 页 共 21 页导数运用中常见结论(1)曲线()yf x在0 xx处的切线的斜率等于0()fx,且切线方程为000()()()yfxxxf x。(2)若可导函数()yf x在0 xx处取得极值,则0()0fx。反之
2、,不成立。(3)对于可导函数()f x,不等式()fx00()的解集决定函数()f x的递增(减)区间。(4)函数()f x在区间 I 上递增(减)的充要条件是:xI()fx0(0)恒成立(()fx不恒为 0).(5)函数()f x(非常量函数)在区间I 上不单调等价于()f x在区间I 上有极值,则可等价转化为方程()0fx在区间 I 上有实根且为非二重根。(若()fx为二次函数且I=R,则有0)。(6)()f x在区间I 上无极值等价于()fx在区间在上是单调函数,进而得到()fx0或()fx0在 I 上恒成立(7)若xI,()f x0恒成立,则min()f x0;若xI,()f x0恒成
3、立,则max()f x0(8)若0 xI,使 得0()fx0,则max()f x0;若0 xI,使 得0()fx0,则min()f x0.(9)设()f x与()g x的定义域的交集为D,若xD()()f xg x恒成立,则有min()()0f xg x.(10)若对11xI、22xI,12()()f xg x恒成立,则minmax()()f xg x.若对11xI,22xI,使得12()()f xg x,则minmin()()f xg x.若对11xI,22xI,使得12()()f xg x,则maxmax()()f xg x.(11)已知()f x在区间1I上的值域为A,,()g x在区间
4、2I上值域为B,若对11xI,22xI,使得1()f x=2()g x成立,则AB。(12)若三次函数f(x)有三个零点,则方程()0fx有两个不等实根12xx、,且极大值大于0,文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3
5、C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 Z
6、K2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3
7、C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 Z
8、K2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3
9、C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 Z
10、K2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8文档编码:CS4B3C4E3V1 HE2J5U9X9Z1 ZK2G5I1D6D8第 3 页 共 21 页极小值小于0.(13)证题中常用的不等式:ln1(0)xxxln+1(1)xx x()1xex1xexln1(1)12xxxx22ln11(0)22xxxx
11、 sinxx(0 x)lnxx0)1x+文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4
12、文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6
13、K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4
14、文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6
15、K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4
16、文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6
17、K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4第 4 页 共 21 页一、有关切线的相关问题例题、【2015 高考新课标1,理 21】已知函数f(x)=31,()ln4xaxg xx.()当a为何值时,x轴为曲线()yf x的切线;【答案】()34a跟踪练习:1、【2011 高考新课标1,理 21】已知函数ln()1axbf xxx,曲线()yf x在点(1,(1
18、)f处的切线方程为230 xy。()求a、b的值;解:()221(ln)()(1)xxbxfxxx由于直线230 xy的斜率为12,且过点(1,1),故(1)1,1(1),2ff即1,1,22bab解得1a,1b。2、(2013课标全国,理21)设函数f(x)x2axb,g(x)ex(cxd)若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y 4x2.(1)求a,b,c,d的值;解:(1)由已知得f(0)2,g(0)2,f(0)4,g(0)4.而f(x)2xa,g(x)ex(cxdc),故b 2,d2,a4,dc4.从而a4,b2,c2,d 2.3、(2014 课标全
19、国,理 21)设函数1(0lnxxbef xaexx,曲线()yf x在点(1,(1)f处的切线为(1)2ye x.()求,a b;【解析】:()函数()f x的定义域为0,,112()lnxxxxabbfxaexeeexxx文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S
20、5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP
21、6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S
22、5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP
23、6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S
24、5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP
25、6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4第 5 页 共 21 页由题意可得(1)2,(1)ffe1,2ab 6 分二、导数单调性、极值、最值的直接应用(一)单调性1、根据导数
26、极值点的相对大小进行讨论例题:【2015 高考江苏,19】已知函数),()(23Rbabaxxxf.(1)试讨论)(xf的单调性;【答案】(1)当0a时,fx在,上单调递增;当0a时,fx在2,3a,0,上单调递增,在2,03a上单调递减;当0a时,fx在,0,2,3a上单调递增,在20,3a上单调递减当0a时,2,0,3ax时,0fx,20,3ax时,0fx,所以函数fx在,0,2,3a上单调递增,在20,3a上单调递减练习:1、已知函数1()ln1af xxaxx()aR.文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY
27、6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E
28、4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY
29、6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E
30、4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY
31、6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E
32、4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY
33、6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4第 6 页 共 21 页当12a时,讨论()f x的单调性;答案:1()ln1(0)af xxaxxx,222l11()(0)aaxxafxaxxxx令2()1(0)h xaxxa x当0a时,()1(0)h xxx,当(0,1),()0,()0 xh xfx,函数()f x单调递减;当(1,),()0,()0 xh xfx,函数()f x单调递增.当0a时,由()0fx,即210axxa,解得1211,1xxa.当12a时12xx,()0h x恒成立,此时()0fx,函数
34、()fx单调递减;当102a时,1110a,(0,1)x时()0,()0h xfx,函数()f x单调递减;1(1,1)xa时,()0,()0h xfx,函数()f x单调递增;1(1,)xa时,()0,()0h xfx,函数()f x单调递减.当0a时110a,当(0,1),()0,()0 xh xfx,函数()fx单调递减;当(1,),()0,()0 xh xfx,函数()f x单调递增.综上所述:当0a时,函数()f x在(0,1)单调递减,(1,)单调递增;当12a时12xx,()0h x恒成立,此时()0fx,函数()f x在(0,)单调递减;当102a时,函数()f x在(0,1)
35、递减,1(1,1)a递增,1(1,)a递减.2、已知 a为实数,函数()(1)exf xax,函数1()1g xax,令函数()()()F xf xg x 当0a时,求函数()F x的单调区间解:函数1()e1xaxF xax,定义域为1x xa当0a时,222222221()21()ee(1)(1)xxaaxa xaaFxaxax令()0Fx,得2221axa9 分文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D
36、8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y
37、4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D
38、8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y
39、4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D
40、8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y
41、4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D
42、8Q4E4第 7 页 共 21 页当210a,即12a时,()0Fx当12a时,函数()F x 的单调减区间为1(,)a,1(,)a 11 分当102a时,解2221axa得122121,aaxxaa121aaa,令()0Fx,得1(,)xa,11(,)xxa,2(,)xx;令()0Fx,得12(,)xxx13 分当102a时,函 数()F x的 单 调 减 区 间 为1(,)a,121(,)aaa,21(,)aa;函数()F x 单调增区间为2121(,)aaaa 15 分当210a,即12a时,由(2)知,函数()F x 的单调减区间为(,2)及(2,)2、根据判别式进行讨论例题:【201
43、5 高考四川,理21】已知函数22()2()ln22f xxaxxaxaa,其中0a.(1)设()g x是()f x的导函数,评论()g x的单调性;【答案】(1)当104a时,()g x在区间114114(0,),(,)22aa上单调递增,在区间114114(,)22aa上单调递减;当14a时,()g x在区间(0,)上单调递增.【解析】(1)由已知,函数()f x的定义域为(0,),()()222ln2(1)ag xfxxaxx,所以222112()2()2224()2xaag xxxx.文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z
44、5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE
45、4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z
46、5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE
47、4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z
48、5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE
49、4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z
50、5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4文档编码:CP6I9Z5U5Y4 HY6K2K4Q2S5 ZE4G7D8Q4E4第 8 页 共 21 页当104a时,()g x在区间114114(0,),(,)22aa上单调递增,在区间114114(,)22aa上单调递减;当14a时,()g x在区间(0,)上单调递增.练习:已知函数()lnaf xxxx,aR(1)求函数()f x的单调区间;解:函数()f x 的定义域为(0,)2221()1axxafxxxx令()0fx,得20 xxa,记14a()当14a时,()0fx,所以()f x 单调减区间为(0,);5 分()当14a