《(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品).pdf(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 信号与系统复习书中最重要的三大变换几乎都有。第一章 信号与系统1、信号的分类连续信号和离散信号周期信号和非周期信号连续周期信号 f(t)满足 f(t)=f(t+mT),离散周期信号 f(k)满足 f(k)=f(k+mN),m=0,1,2,两个周期信号 x(t),y(t)的周期分别为 T1和 T2,若其周期之比 T1/T2为有理数,则其和信号 x(t)+y(t)仍然是周期信号,其周期为T1和 T2的最小公倍数。能量信号和功率信号因果信号和反因果信号2、信号的基本运算(+-)2.1 信号的(+-)2.2 信号的时间变换运算(反转、平移和尺度变换)3、奇异信号3.1 单位冲激函数的性质f(t)(
2、t)=f(0)(t),f(t)(t a)=f(a)(t a)精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 25 页 -2 例:3.2 序列(k)和(k)f(k)(k)=f(0)(k)f(k)(k k0)=f(k0)(k k0)4、系统的分类与性质4.1 连续系统和离散系统4.2 动态系统与即时系统4.3 线性系统与非线性系统线性性质T af()=a T f()(齐次性)T f1()+f 2()=T f 1()+T f 2()(可加性)当动态系统满足下列三个条件时该系统为线性系统:y()=yf()+yx()=T f(),0+T 0,x(0)(可分解性)Ta f(),0=a T f(),
3、0 Tf1(t)+f2(t),0=T f1(),0+T f2(),0(零状态线性)0(d)()(ftttf)(d)()(aftattf?d)()4sin(91ttt)0(d)()(fttft)0()1(d)()()()(nnnfttft4)2(2)2(ddd)()2(0022tttttttt)(1|1)()()(taaatnnn)(|1)(taat)(|1)(00attatat)0()()(fkkfk精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 25 页 -文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J
4、10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P
5、1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3
6、E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D
7、2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O
8、9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:C
9、E3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU
10、2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H1文档编码:CE3E1S1G3T1 HU2D2J10I2S6 ZO6O9P1E9H13 T0,ax1(0)+bx2(0)=aT0,x1(0)+bT0,x2(0)(零输入线性)4.4 时不变系统与时变系统T0,f(t-td)=yf(t-td)(时不变性质)直观判断方法:若 f()前出现变系数,或有反转、展缩变换,则系统为时变系统。LTI 连续系统的微分特性和积分特性微分特性:若 f(t)yf(t),则f(t)y f(t)积分特性:若 f(t)yf(t),则4.5 因果系统与
11、非因果系统5、系统的框图描述第二章 连续系统的时域分析1、LTI 连续系统的响应1.1 微分方程的经典解y(t)(完全解)=yh(t)(齐次解)+yp(t)(特解)描述某系统的微分方程为 y”(t)+5y(t)+6y(t)=f(t)求(1)当 f(t)=2e-t,t 0;y(0)=2,y(0)=-1时的全解;(2)当 f(t)=e-2t,t 0;y(0)=1,y(0)=0 时的全解2、冲激响应系统在单位冲激信号作用下的零状态响应,求解方法系数平衡法系统方程两端对应系数相等ttxxyxxfd)(d)(f精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 25 页 -文档编码:CG1W9M4P
12、2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2
13、I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7
14、E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M
15、4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2
16、A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2
17、E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W
18、9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E94 由单位阶跃响应求单位冲激响应,即()()dttdt例 y”(t)+5y(t)+6y(t)=f(t)求其冲激响应 h(t)。3、阶跃响应系统在单位阶跃信号作用下的零状态响应。4、卷积积分4.1 定义1212()()()()f tftfft4.2 任意信号作用下的零状态响应4.3 卷积积分
19、的求法按照定义图解法4.4 卷积积分的性质交换律结合律分配律积分性质微分性质任意时间函数与冲激函数的卷积f(t)*(t)=(t)*f(t)=f(t);f(t)*(t)=f(t);f(t)*(t)卷积的时移性质 f1(t t1)*f2(t t2)=f1(t t1 t2)*f2(t)=f1(t)*f2(t t1 t2)=f(t t1 t2)第三章 离散系统的时域分析1、LTI 离散系统的响应1.1 差分与差分方程1.2 差分方程的经典解(和微分方程相类似)nnnnnnttftftfttftftftd)(d*)()(*d)(d)(*)(dd212121d)(*)()(*d)(d)(*)(212121
20、tttftftffff精品资料-欢迎下载-欢迎下载 名师归纳-第 4 页,共 25 页 -文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W
21、9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8
22、T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8
23、H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG
24、1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4
25、E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10
26、D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E95 1.2.1y(k)=yh(k)+yp(k)当特征根为单根时,齐次解yn(k)形式为:Ck当特征根为 r 重根时,齐次解yn(k)形式为:(Cr-1kr-1+Cr-2kr-
27、2+C1k+C0)k当特征根为一对共轭复根时,齐次解 yn(k)形式为:1.2.2 特解 yp(k):特解的形式与激励的形式雷同(r 1)。所有特征根均不等于1 时;yp(k)=Pmkm+P1k+P0有 r 重等于 1 的特征根时;yp(k)=krPmkm+P1k+P0 (2)激励 f(k)=ak当 a 不等于特征根时;yp(k)=Pak当 a 是 r 重特征根时;yp(k)=(Prkr+Pr-1kr-1+P1k+P0)ak(3)激励 f(k)=cos(k)或 sin(k)且所有特征根均不等于ej;yp(k)=Pcos(k)+Qsin(k)若描述某系统的差分方程为 y(k)+4y(k 1)+4
28、y(k 2)=f(k)已知初始条件 y(0)=0,y(1)=1;激励 f(k)=2k,k0。求方程的全解。1.3 零输入响应和零状态响应2、单位序列响应和阶跃响应1,2jecos()sin()kCkDk精品资料-欢迎下载-欢迎下载 名师归纳-第 5 页,共 25 页 -文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文
29、档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2
30、A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I
31、7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E
32、9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4
33、P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A
34、2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E
35、7E96 2.1 单位序列响应2.1.1 定义2.1.2 求法递推求初始值,求齐次差分方程的解例 已知某系统的差分方程为 y(k)-y(k-1)-2y(k-2)=f(k)求单位序列响应h(k)。例 若方程为:y(k)y(k 1)2y(k 2)=f(k)f(k 2)求单位序列响应 h(k)2.2 阶跃响应2.2.1 定义2.2.2 求法3 常用序列01()()(1)()()()(1)()1()(1)()21()(1)1ikikikkiikkkkkiikkiik kkaaiaa4 离散信号的卷积和4.1 任意序列的分解0)()()(jkjjkhihkg,h(k)=g(k)精品资料-欢迎下载-欢迎下
36、载 名师归纳-第 6 页,共 25 页 -文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10
37、D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:
38、CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 H
39、C4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI
40、10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编
41、码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3
42、 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E97 f(k)4.2 列作用下的零状态响应4.3 定义4.4 卷积和的求法 4.4.1 图解法卷积过程可分解为四步:(1)换元:k 换为 i 得 f1(i),f2(i)(2)反转平移:由 f2(i)反转 f2(i)右移 k
43、f2(k i)(3)乘积:f1(i)f2(k i)(4)求和:i 从 到对乘积项求和。注意:k 为参变量。4.1.2 不进位乘法求卷积例 f1(k)=0,2,1,5,0 k=1 f2(k)=0,3,4,0,6,0 k=0 4.2 卷积和的性质4.2.1 法的三律:(1)交换律,(2)分配律,(3)结合律.iikif)()(ifikhifky)()()(iikfifkf)()()(214.2.2f(k)*(k)=f(k),f(k)*(k k0)=f(k k0)精品资料-欢迎下载-欢迎下载 名师归纳-第 7 页,共 25 页 -文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8
44、H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG
45、1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4
46、E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10
47、D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:
48、CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 H
49、C4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI
50、10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E9文档编码:CG1W9M4P2A3 HC4E8T2A2I7 ZI10D8H2E7E98 4.2.4f1(k k1)*f2(k k2)=f1(k k1 k2)*f2(k)第四章 连续系统的频域分析1 傅里叶级数1.1 傅里叶级数的三角形式1.2 波形的对称特性和谐波特性A.f(t)为偶函数对称纵坐标展开为余弦级数B.f(t)为奇函数对称于原点展开为正弦级数C f(t)为奇谐函数 f(t)=f(t T/2)傅里叶级数中