《《逐步聚合反应》课件.ppt》由会员分享,可在线阅读,更多相关《《逐步聚合反应》课件.ppt(129页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第七章逐步聚合反应(第七章逐步聚合反应(stepwise polymerization)一一.引言引言(introduction)1 缩聚反应的发展缩聚反应的发展 材料是各种科学技术发展的物质基础,只有开发成功相应的新材料才材料是各种科学技术发展的物质基础,只有开发成功相应的新材料才能促进新技术革命在相关领域中的成功。一般说来,塑料工业形成自己的能促进新技术革命在相关领域中的成功。一般说来,塑料工业形成自己的工业是基于采用缩聚方法工业是基于采用缩聚方法。1907年,年,L H Backland开始制造第一个工业合成产品酚醛树脂,随开始制造第一个工业合成产品酚醛树脂,随后出现了醇酸树脂;后出现了
2、醇酸树脂;1920年年 脲醛树脂;脲醛树脂;1929年,年,美国的美国的W.H.Carothers提出了缩合聚合的概念;提出了缩合聚合的概念;30年代,尼龙年代,尼龙-6和尼龙和尼龙-66问世,开始了合成纤维的生产;问世,开始了合成纤维的生产;50年代处,聚酯纤维开始工业化生产;年代处,聚酯纤维开始工业化生产;50年代末,年代末,P.W.Morgan提出界面缩聚方法,为合成熔点与分解温度提出界面缩聚方法,为合成熔点与分解温度接近的高熔点芳杂环聚合物的合成提供了一个切实可行的途径;接近的高熔点芳杂环聚合物的合成提供了一个切实可行的途径;60年代初,年代初,C.S.Marvel由多官能团的缩聚和闭
3、环反应,得到在分子由多官能团的缩聚和闭环反应,得到在分子主链上形成新的芳杂环的耐高温聚合物,开发出了各种线型、半梯型主链上形成新的芳杂环的耐高温聚合物,开发出了各种线型、半梯型和梯型聚合物。和梯型聚合物。1 2逐步聚合类型逐步聚合类型逐步聚合反应具体反应种类很多,概括起来主要有两大类:逐步聚合反应具体反应种类很多,概括起来主要有两大类:缩合聚合缩合聚合(Polycondensation)和和 逐步加成聚合逐步加成聚合(Polyaddition)(1)(1)缩聚反应缩聚反应 a.聚酯反应聚酯反应:二元醇与二元羧酸、二元酯、二元酰氯等之间反应:二元醇与二元羧酸、二元酯、二元酰氯等之间反应n HO-
4、R-OH+n HOOC-R-COOHH-(ORO-OCRCO)n-OH+(2n-1)H2Ob.聚醚化反应聚醚化反应:二元醇与二元醇反应二元醇与二元醇反应n HO-R-OH+n HO-R-OHH-(OR-OR)n-OH+(2n-1)H2Oc.聚酰胺反应聚酰胺反应:二元胺与二元羧酸、二元酯、二元酰氯等反应:二元胺与二元羧酸、二元酯、二元酰氯等反应n H2N-R-NH2+n ClOC-R-COClH-(HNRNH-OCRCO)n-Cl+(2n-1)HCl2d.聚硅氧烷化反应聚硅氧烷化反应:硅醇之间聚合硅醇之间聚合n HO-SiR1R2-OH+n HO-SiR1R2-OHH-(OSiR1R2-OSiR
5、1R2)n-OH+(2n-1)H2O共同特点共同特点:在生成聚合物分子的同时,伴随有小分子副产物的生成,如在生成聚合物分子的同时,伴随有小分子副产物的生成,如H2O,HCl,ROH等。等。(2)(2)逐步加成聚合逐步加成聚合 a.重键加成聚合重键加成聚合:含活泼氢功能基的亲核化合物与含亲电不饱和功能基的亲电化合物之间的含活泼氢功能基的亲核化合物与含亲电不饱和功能基的亲电化合物之间的聚合。如:聚合。如:n O=C=N-R-N=C=O+n HO-R-OH聚氨基甲酸酯,简称聚氨酯聚氨基甲酸酯,简称聚氨酯3含活泼氢的功能基含活泼氢的功能基:-NH2,-NH,-OH,-SH,-SO2H,-COOH,-S
6、iH等等亲电不饱和功能基亲电不饱和功能基:主要为连二双键和三键主要为连二双键和三键,如:如:-C=C=O,-N=C=O,-N=C=S,-CC-,-CN等等b.Diels-Alder加成聚合加成聚合:单体含一对共轭双键单体含一对共轭双键如:如:与缩聚反应不同,逐步加成聚合反应没有小分子副产物生成与缩聚反应不同,逐步加成聚合反应没有小分子副产物生成。另外还有:另外还有:开环反应:开环反应:部分开环反应为逐步反应,如水、酸引发的己内酰胺的开环反部分开环反应为逐步反应,如水、酸引发的己内酰胺的开环反应。应。氧化偶合氧化偶合:单体与氧气的缩合反应。:单体与氧气的缩合反应。2,6二甲基苯酚和氧气形成聚苯醚
7、二甲基苯酚和氧气形成聚苯醚4二二.缩聚反应缩聚反应(polycondensation)1.缩合反应:缩合反应:除主产物外,还有低分子副产物产生,如醋酸乙酯的合成。除主产物外,还有低分子副产物产生,如醋酸乙酯的合成。2.缩聚反应缩聚反应具有两个或两个以上反应官能团或相当于官能团的反应点的低具有两个或两个以上反应官能团或相当于官能团的反应点的低分子化合物,通过多次重复缩合反应形成聚合物的过程。分子化合物,通过多次重复缩合反应形成聚合物的过程。3.缩聚反应的体系缩聚反应的体系官能度官能度(functionality):反应物分子中能参加反应的官能团数。:反应物分子中能参加反应的官能团数。单体的官能度
8、一般容易判断。单体的官能度一般容易判断。个别单体,反应条件不同,官能度不同,如个别单体,反应条件不同,官能度不同,如进行酰化反应,官能度为进行酰化反应,官能度为 1 1与醛缩合,官能度为与醛缩合,官能度为 3 35 1-1官官能能度度体体系系:醋醋酸酸与与乙乙醇醇反反应应体体系系,醋酸和乙醇均为单官能团物质。醋酸和乙醇均为单官能团物质。1-2官官能能度度体体系系:丁丁醇醇(官官能能度度为为1)与与邻邻苯二甲酸酐(官能度为苯二甲酸酐(官能度为2)反应的体系。)反应的体系。对于不同的官能度体系,其产物结构不同对于不同的官能度体系,其产物结构不同6体系中若有一种原料属单官能度,体系中若有一种原料属单
9、官能度,缩合后只能得到低分子化合物。缩合后只能得到低分子化合物。7 2-2官官能能度度体体系系:如如二二元元酸酸和和二二元元醇醇,生生成线形缩聚物。通式如下:成线形缩聚物。通式如下:2官能度体系:单体有能相互反应的官能团官能度体系:单体有能相互反应的官能团A、B(如氨基酸、羟基酸等如氨基酸、羟基酸等),可经自身缩聚,可经自身缩聚,形成类似的线形缩聚物。通式如下:形成类似的线形缩聚物。通式如下:2-2或或2官能度体系的单体进行缩聚形成线形官能度体系的单体进行缩聚形成线形缩聚物。缩聚物。8910 4 缩合物分类按单体反应(均、混和共缩聚)按单体反应(均、混和共缩聚)按高分子链结构(线型和非线型)按
10、高分子链结构(线型和非线型)按反应的性质(可逆与不可逆)按反应的性质(可逆与不可逆)聚合产物聚合产物结构不同结构不同线型逐步聚合线型逐步聚合非线型逐步聚合非线型逐步聚合平衡线型逐步聚合平衡线型逐步聚合不平衡线型逐步聚合不平衡线型逐步聚合热力学热力学12线形缩聚线形缩聚(linear polycondensation)单单体体含含有有两两个个官官能能团团,形形成成的的大大分分子子向向两两个个方方向向增增长长,得到线形缩聚物的反应。如涤纶、尼龙、聚碳酸酯等。得到线形缩聚物的反应。如涤纶、尼龙、聚碳酸酯等。体形缩聚体形缩聚(tridimensional polycondensation)至少有一单体
11、含两个以上的官能团,形成的大分至少有一单体含两个以上的官能团,形成的大分子向三个方向增长,得到体形结构缩聚物的反应。如子向三个方向增长,得到体形结构缩聚物的反应。如酚醛树脂、环氧树脂等。酚醛树脂、环氧树脂等。缩聚反应的分类缩聚反应的分类4.1 按聚合物的结构分类按聚合物的结构分类13 -COOR -CONH-SO2 -NHCOO-(聚酯)聚酯)(聚酰胺)(聚酰胺)(聚砜)(聚砜)(聚氨酯)(聚氨酯)按参加反应的单体数分类按参加反应的单体数分类 均缩聚:均缩聚:只有一个单体参加的反应。只有一个单体参加的反应。2官能度体系:官能度体系:aRb杂缩聚:杂缩聚:两种单体参加的反应。两种单体参加的反应。
12、22官能度体系:官能度体系:aAa+bBb共缩聚:共缩聚:两种以上单体参加的反应。两种以上单体参加的反应。aAa+bBb+aAa(改性)改性)4.3 按聚合物的特征基团分类按聚合物的特征基团分类4.4按反应热力学的特征分类按反应热力学的特征分类平衡缩聚平衡缩聚 反反 应应(可逆缩聚):指平衡常数小于(可逆缩聚):指平衡常数小于 103 的缩聚反应的缩聚反应不平衡缩聚反应(不可逆缩聚):平衡常数大于不平衡缩聚反应(不可逆缩聚):平衡常数大于 103 14条件:条件:1)必须是)必须是22、2官能度体系;官能度体系;2)反应单体要不易成环)反应单体要不易成环;3)少副反应,保证一定的分子量)少副反
13、应,保证一定的分子量;(副反应包括:成环反应,链交换、降解等反应等)(副反应包括:成环反应,链交换、降解等反应等)三三.线形缩聚线形缩聚(linear polycondensation)1.线形缩聚单体线形缩聚单体15 如,二甲基二氯硅烷水解缩聚制如,二甲基二氯硅烷水解缩聚制备聚硅氧烷,在酸性条件下,生成备聚硅氧烷,在酸性条件下,生成稳定的八元环稳定的八元环 通过这一方法,可纯化单体通过这一方法,可纯化单体C 单体浓度单体浓度:成环是单分子反应成环是单分子反应,在较低浓度下有利于成环;在较低浓度下有利于成环;缩聚缩聚是双分子反应,一般在较高浓度下进行,是双分子反应,一般在较高浓度下进行,才有利
14、于缩聚。才有利于缩聚。D 反应温度:反应温度升高时,有利于成环反应。反应温度:反应温度升高时,有利于成环反应。173.线形缩聚机理线形缩聚机理逐步与平衡逐步与平衡3.1.线型缩聚的线型缩聚的线型缩聚的线型缩聚的逐步特性逐步特性逐步特性逐步特性以二元醇和二元酸合成聚酯为例以二元醇和二元酸合成聚酯为例。18 三聚体和四聚体可以相互反应,也可自身反应,也可与单体、二聚体三聚体和四聚体可以相互反应,也可自身反应,也可与单体、二聚体反应反应含羟基的任何聚体和含羧基的任何聚体都可以进行反应,形成如下通式含羟基的任何聚体和含羧基的任何聚体都可以进行反应,形成如下通式:l如此进行下去,分子量随时间延长而增加,
15、显示出逐步的特征如此进行下去,分子量随时间延长而增加,显示出逐步的特征 n n聚体聚体聚体聚体 m m聚体聚体聚体聚体 (n+m)(n+m)聚体聚体聚体聚体 水水水水3.2.3.2.线型缩聚的线型缩聚的线型缩聚的线型缩聚的可逆特性可逆特性可逆特性可逆特性大部分线型缩聚反应是可逆反应,但可逆程度有差别大部分线型缩聚反应是可逆反应,但可逆程度有差别大部分线型缩聚反应是可逆反应,但可逆程度有差别大部分线型缩聚反应是可逆反应,但可逆程度有差别可逆程度可由可逆程度可由可逆程度可由可逆程度可由平衡常数平衡常数平衡常数平衡常数来衡量,如聚酯化反应来衡量,如聚酯化反应来衡量,如聚酯化反应来衡量,如聚酯化反应:
16、19根据平衡常数根据平衡常数根据平衡常数根据平衡常数K K的大小,可将线型缩聚大致分为三类的大小,可将线型缩聚大致分为三类的大小,可将线型缩聚大致分为三类的大小,可将线型缩聚大致分为三类:KK值小,值小,值小,值小,如聚酯化反应,如聚酯化反应,如聚酯化反应,如聚酯化反应,K K 4 4,副产物水对分子量影响很大副产物水对分子量影响很大副产物水对分子量影响很大副产物水对分子量影响很大KK值中等,如聚酰胺化反应,值中等,如聚酰胺化反应,值中等,如聚酰胺化反应,值中等,如聚酰胺化反应,K K 300300500500 水对分子量有所影响水对分子量有所影响水对分子量有所影响水对分子量有所影响KK值很大
17、,在几千以上,如聚碳酸酯、聚砜值很大,在几千以上,如聚碳酸酯、聚砜值很大,在几千以上,如聚碳酸酯、聚砜值很大,在几千以上,如聚碳酸酯、聚砜 可看成不可逆缩聚可看成不可逆缩聚可看成不可逆缩聚可看成不可逆缩聚 对所有缩聚反应来说,逐步特性是共有的,而可逆平衡的程度可以有很大的差别203.4 3.4 反应程度反应程度反应程度反应程度 在缩聚反应中,常用反应程度来描述反应的深度在缩聚反应中,常用反应程度来描述反应的深度n反应程度反应程度:是参加反应的官能团数占起始官能团数的分数,用是参加反应的官能团数占起始官能团数的分数,用P表示表示 反应程度可以对任何一种参加反应的官能团而言反应程度可以对任何一种参
18、加反应的官能团而言 对于对于等物质量等物质量的二元酸和二元醇的缩聚反应,设:的二元酸和二元醇的缩聚反应,设:体系中起始二元酸和二元醇的分子总数为体系中起始二元酸和二元醇的分子总数为N0 等于起始羧基数或羟基数等于起始羧基数或羟基数 t 时的聚酯分子数为时的聚酯分子数为N,等于残留的羧基或羟基数等于残留的羧基或羟基数22n反应程度与转化率根本不同反应程度与转化率根本不同 转化率转化率:参加反应的单体量占起始单体量的分数:参加反应的单体量占起始单体量的分数 是指已经参加反应的单体的数目是指已经参加反应的单体的数目 反应程度:反应程度:则是指已经反应的官能团的数目则是指已经反应的官能团的数目 例如:
19、例如:一种缩聚反应,单体间双双反应很快全部变成二聚一种缩聚反应,单体间双双反应很快全部变成二聚体,就单体转化率而言,转化率达体,就单体转化率而言,转化率达100;而官能团的反应程度仅而官能团的反应程度仅50 n反应程度与平均聚合度的关系反应程度与平均聚合度的关系 聚合度聚合度是指高分子中含有的结构单元的数目是指高分子中含有的结构单元的数目23当当P0.9,Xn=10一般高分子的一般高分子的Xn=100 200,P要提高到要提高到 0.99 0.995代入反应程度关系式代入反应程度关系式代入反应程度关系式代入反应程度关系式聚合度将随反应程度而增加;聚合度将随反应程度而增加;符合此式须满足的条件:
20、官能团数符合此式须满足的条件:官能团数等等当量。当量。241mol二元酸与二元酸与1mol二元醇反应:二元醇反应:体系中的羟基数或羧基数为:体系中的羟基数或羧基数为:反应若干时间后,体系中残存的羧基数反应若干时间后,体系中残存的羧基数:0.5mol N 大分子数:大分子数:1*2=2mol(N0)(有一个羧基,就有一条大分子)(有一个羧基,就有一条大分子)Example253.5.缩聚过程中的副反应缩聚过程中的副反应 除环化反应外,还可能发生如下副反应除环化反应外,还可能发生如下副反应n官能团的消去反应官能团的消去反应 包括羧酸的脱羧、胺的脱氨等反应,如:包括羧酸的脱羧、胺的脱氨等反应,如:二
21、元酸脱羧温度二元酸脱羧温度二元酸脱羧温度二元酸脱羧温度()己二酸己二酸 300320 庚二酸庚二酸 290310 辛二酸辛二酸 340360 壬二酸壬二酸 320340 癸二酸癸二酸 350370n化学降解化学降解 低分子醇、酸、水可使聚酯、聚酰胺等低分子醇、酸、水可使聚酯、聚酰胺等醇解、酸解、水解:醇解、酸解、水解:降解反应使分子量降低,在聚合和加工中都可能发生降解反应使分子量降低,在聚合和加工中都可能发生26醇解醇解酸解酸解水解水解n链交换反应链交换反应 聚酯、聚酰胺、聚硫化物的两个分子可在任何地方聚酯、聚酰胺、聚硫化物的两个分子可在任何地方的酯键、酰胺键、硫键处进行链交换反应的酯键、酰胺
22、键、硫键处进行链交换反应27既不增加又不减少官能团数目,不影响反应程度既不增加又不减少官能团数目,不影响反应程度不影响体系中分子链的数目,使分子量分布更均一不影响体系中分子链的数目,使分子量分布更均一不同聚合物进行链交换反应,可形成嵌段缩聚物不同聚合物进行链交换反应,可形成嵌段缩聚物特特特特点点点点28四四四四 线型缩聚动力学线型缩聚动力学线型缩聚动力学线型缩聚动力学 缩聚反应在形成大分子的过程中是逐步进行的,缩聚反应在形成大分子的过程中是逐步进行的,若若每一步都有不同的速率常数,研究将无法进行每一步都有不同的速率常数,研究将无法进行 原先认为原先认为,官能团的活性将随分子量增加而递减,官能团
23、的活性将随分子量增加而递减1 1.官能团等活性理论官能团等活性理论官能团等活性理论官能团等活性理论原因原因:聚合度增大后,分子活动减慢,碰聚合度增大后,分子活动减慢,碰撞频率降低;撞频率降低;体系粘度增加,妨碍了分子运动;体系粘度增加,妨碍了分子运动;长链分子有可能将端基官能团包埋长链分子有可能将端基官能团包埋 但实验结果推翻了这种观点但实验结果推翻了这种观点n k10n k104 4 29Flory提出了官能团等活性理论:不同链长的端基官能团,具有相同的反应能力和参加反应的机会,即官能团的活性与分子的大小无关 同时指出,官能团等活性理论是近似的,不是绝对的。这同时指出,官能团等活性理论是近似
24、的,不是绝对的。这一理论大大简化了研究处理,可用同一平衡常数表示,整一理论大大简化了研究处理,可用同一平衡常数表示,整个缩聚过程可以用两种官能团之间的反应来表征个缩聚过程可以用两种官能团之间的反应来表征Flory解释如下:解释如下:l 官能团之间的碰撞次数和有效碰撞几率与高分子的扩散速率无关官能团之间的碰撞次数和有效碰撞几率与高分子的扩散速率无关l 体系粘度增大时,虽然整个高分子运动速率减慢,但链段运动和链体系粘度增大时,虽然整个高分子运动速率减慢,但链段运动和链端的官能团活动并未受到限制端的官能团活动并未受到限制l 由于高分子的活动迟缓,扩散速率低,反而使两官能团之间碰撞的由于高分子的活动迟
25、缓,扩散速率低,反而使两官能团之间碰撞的持续时间延长,有利于提高有效碰撞几率持续时间延长,有利于提高有效碰撞几率302.2.线型缩聚动力学线型缩聚动力学不可逆条件下的缩聚动力学不可逆条件下的缩聚动力学 在不断排出低分子副产物时符合不可逆条件在不断排出低分子副产物时符合不可逆条件以聚酯化反应为例,聚酯是酸催化反应以聚酯化反应为例,聚酯是酸催化反应慢慢慢慢31k3是最慢的一步反应,是最慢的一步反应,由于不可逆,由于不可逆,k4暂不考虑暂不考虑聚酯反应速率用羧基消失速率来表示:聚酯反应速率用羧基消失速率来表示:C+(OH)2是质子化羧基的浓度,难以确定,设法消去是质子化羧基的浓度,难以确定,设法消去
26、代入代入式式32考虑催化用酸考虑催化用酸HA的离解平衡的离解平衡代入代入式式33 催化用酸催化用酸HA:可以是二元酸本身,但反应较慢可以是二元酸本身,但反应较慢 也可以是外加酸,如也可以是外加酸,如H2SO4,大大加速大大加速l自催化缩聚反应自催化缩聚反应 无外加酸无外加酸,二元酸单体作催化剂,二元酸单体作催化剂,HA=COOH 羧基与羟基浓度相等,以羧基与羟基浓度相等,以C表示,将表示,将式中的所有常式中的所有常数及数及A合并成合并成 k表明表明自催化的聚酯反自催化的聚酯反应呈三级反应应呈三级反应积分积分由反应程度由反应程度羧基数用羧基浓度羧基数用羧基浓度C代替代替34 表明表明(Xn)2与
27、反应时间与反应时间 t呈线性关系呈线性关系 聚合度随反应时间缓慢增加,要获得高分子量,需聚合度随反应时间缓慢增加,要获得高分子量,需要较长的时间要较长的时间 以以(Xn)2对对 t 作图,直线的斜率可求得速率常数作图,直线的斜率可求得速率常数 kC C C Co o(1(1P)P),代入上式代入上式代入上式代入上式P Pt t关系式关系式代入代入代入代入Xn Xn t t关系式关系式讨讨讨讨论论论论35为了加速反应,常外加酸作为聚酯化反应的催化剂为了加速反应,常外加酸作为聚酯化反应的催化剂反应速率将由自催化和酸催化两项组成:反应速率将由自催化和酸催化两项组成:作为催化剂,作为催化剂,H+不变,
28、且不变,且 ka H+kC,kC略去略去并令并令k=ka H+,则则l 外加酸催化缩聚反应外加酸催化缩聚反应外加酸催化缩聚反应外加酸催化缩聚反应此时此时此时此时外加酸催化为二级反应外加酸催化为二级反应外加酸催化为二级反应外加酸催化为二级反应36Xn与与反应时间反应时间 t 呈线性关系,由斜率可求得呈线性关系,由斜率可求得 k外加酸聚酯化的外加酸聚酯化的 k 比自催化比自催化 k 大将近两个数量级大将近两个数量级工业生产总是以外加酸作催化剂来加速反应工业生产总是以外加酸作催化剂来加速反应积分得积分得积分得积分得将将将将 C C C Co o(1(1P)P)代入上式代入上式代入上式代入上式P Pt
29、 t关系式关系式关系式关系式XnXnt t关系式关系式关系式关系式讨讨讨讨论论论论37平衡缩聚动力学平衡缩聚动力学聚酯反应速率是正、逆反应速率之差聚酯反应速率是正、逆反应速率之差聚酯化反应在小分子副产物不能及时排出时,逆反聚酯化反应在小分子副产物不能及时排出时,逆反聚酯化反应在小分子副产物不能及时排出时,逆反聚酯化反应在小分子副产物不能及时排出时,逆反应不能忽视应不能忽视应不能忽视应不能忽视令羟基和羧基等当量,起始浓度为令羟基和羧基等当量,起始浓度为令羟基和羧基等当量,起始浓度为令羟基和羧基等当量,起始浓度为1 1,t t时浓度为时浓度为时浓度为时浓度为C C 起始起始起始起始 1 1 0 0
30、 1 1 0 0t t 时水未排出时水未排出时水未排出时水未排出 C C C C 1 1C 1C 1C C 水部分排出水部分排出水部分排出水部分排出 C C C C 1 1C nC nw w水未排出时水未排出时水未排出时水未排出时38水部分排出时水部分排出时引入平衡常数引入平衡常数:K k1/k1,k1=k1/K,代入上两式代入上两式根据反应程度关系式根据反应程度关系式根据反应程度关系式根据反应程度关系式整理整理整理整理:水未排出时水未排出时水未排出时水未排出时:水部分排出时水部分排出时水部分排出时水部分排出时:总反应速率与反应程度、平衡常数、低分子副产物含量有关总反应速率与反应程度、平衡常数
31、、低分子副产物含量有关总反应速率与反应程度、平衡常数、低分子副产物含量有关总反应速率与反应程度、平衡常数、低分子副产物含量有关39五五 影响线型缩聚物聚合度的因素和控制方法影响线型缩聚物聚合度的因素和控制方法影响线型缩聚物聚合度的因素和控制方法影响线型缩聚物聚合度的因素和控制方法n反应程度对聚合度的影响反应程度对聚合度的影响 在任何情况下,缩聚物的聚合度均随反应程度的在任何情况下,缩聚物的聚合度均随反应程度的增大而增大增大而增大 反应程度受到某些条件的限制反应程度受到某些条件的限制 利用缩聚反应的逐步特性,利用缩聚反应的逐步特性,通过冷却通过冷却可控制反应程可控制反应程度,以获得相应的分子量度
32、,以获得相应的分子量 体型缩聚物常常用这一措施体型缩聚物常常用这一措施 1.影响聚合度的因素影响聚合度的因素影响聚合度的因素影响聚合度的因素可逆反应可逆反应可逆反应可逆反应原料非等当量比原料非等当量比原料非等当量比原料非等当量比条件条件条件条件等当量等当量等当量等当量不可逆不可逆不可逆不可逆40 在可逆缩聚反应中,平衡常数对在可逆缩聚反应中,平衡常数对 P 和和 Xn 有很大的有很大的影响,不及时除去副产物,将无法提高聚合度影响,不及时除去副产物,将无法提高聚合度l密闭体系密闭体系 两单体等当量,小分子副产物未排出两单体等当量,小分子副产物未排出 缩聚平衡对聚合度的影响缩聚平衡对聚合度的影响缩
33、聚平衡对聚合度的影响缩聚平衡对聚合度的影响正、逆反应达到平衡时,总聚合速率为零,则正、逆反应达到平衡时,总聚合速率为零,则正、逆反应达到平衡时,总聚合速率为零,则正、逆反应达到平衡时,总聚合速率为零,则整理整理整理整理41聚酯化反应,聚酯化反应,K=4,Xn 3聚酰胺反应,聚酰胺反应,K=400,21不可逆反应不可逆反应 K=104,101解方程解方程解方程解方程P 1 P 1 此根无意义此根无意义此根无意义此根无意义代入代入即即在密闭在密闭在密闭在密闭体系体系体系体系封闭体系中,封闭体系中,聚合度取决于聚合度取决于平衡常数平衡常数42l非密闭体系非密闭体系 在实际操作中,要采取措施排出小分子
34、在实际操作中,要采取措施排出小分子两单体等当量比,小分子部分排出时两单体等当量比,小分子部分排出时减压减压减压减压加热加热加热加热通通通通N N2 2,CO,CO2 2平衡时平衡时平衡时平衡时当当当当 P P 1(0.99)1(0.99)时时时时缩聚平衡方程缩聚平衡方程缩聚平衡方程缩聚平衡方程近似表达了近似表达了近似表达了近似表达了XnXn、KK和和和和 n nWW三者之间三者之间三者之间三者之间的定量关系的定量关系的定量关系的定量关系倒置倒置倒置倒置残留水浓度残留水浓度43在生产中,要使在生产中,要使 Xn 100,不同反应允许的,不同反应允许的 nW不同不同 K值值 nW(mol/L)聚酯
35、聚酯 4 4 104(高真空度)(高真空度)聚酰胺聚酰胺 400 4 102(稍低真空度)(稍低真空度)可溶性酚醛可溶性酚醛 103 可在水介质中反应可在水介质中反应 反应程度和平衡条件是影响线形缩聚物聚合度的重反应程度和平衡条件是影响线形缩聚物聚合度的重要因素,但不能用作控制分子量的手段,因为缩聚物的要因素,但不能用作控制分子量的手段,因为缩聚物的分子两端仍保留着可继续反应的官能团。分子两端仍保留着可继续反应的官能团。控制分子量的有效办法控制分子量的有效办法:端基封锁2.2.线形缩聚物聚合度的控制线形缩聚物聚合度的控制线形缩聚物聚合度的控制线形缩聚物聚合度的控制44l某一单体稍过量某一单体稍
36、过量(即非等摩尔比),使大分子链端带即非等摩尔比),使大分子链端带有相同的官能团;有相同的官能团;l加一种单官能团物质,使其与大分子端基反应,起加一种单官能团物质,使其与大分子端基反应,起封端作用。封端作用。使某官能团稍过量使某官能团稍过量使某官能团稍过量使某官能团稍过量或加入少量单官能团物质或加入少量单官能团物质或加入少量单官能团物质或加入少量单官能团物质 在两官能团等当量的基础上在两官能团等当量的基础上45分三种情况进行讨论:分三种情况进行讨论:单体单体aAa和和bBb反应,其中反应,其中bBb稍过量稍过量 令令Na、Nb分别为官能团分别为官能团a、b的起始数的起始数 两种单体的官能团数之
37、比为:两种单体的官能团数之比为:下一步要求出聚合度下一步要求出聚合度Xn与与 r(或或q)、反应程度、反应程度P的关系式的关系式称为称为称为称为摩尔系数摩尔系数摩尔系数摩尔系数(是官能团数之比)(是官能团数之比)(是官能团数之比)(是官能团数之比)bBbbBb单体的分子单体的分子单体的分子单体的分子过量分率过量分率过量分率过量分率(是分子数之比)为(是分子数之比)为(是分子数之比)为(是分子数之比)为:r-q r-q 关系式关系式关系式关系式46 设官能团设官能团a的反应程度为的反应程度为P 则则 a官能团的反应数为官能团的反应数为 NaP(也是也是b官能团的反应数官能团的反应数)a官能团的残
38、留数为官能团的残留数为 NaNaP b官能团的残留数为官能团的残留数为 NbNaP a、b官能团的残留总数为官能团的残留总数为 NaNb2NaP 残留的官能团总数分布在大分子的两端,而每个大分残留的官能团总数分布在大分子的两端,而每个大分子有两个官能团子有两个官能团 则,体系中则,体系中大分子总数大分子总数是端基官能团数的一半是端基官能团数的一半 (NaNb2NaP)/2 体系中体系中结构单元数结构单元数等于单体分子数(等于单体分子数(NaNb)/2表示了表示了表示了表示了XnXn与与与与P P、r r或或或或q q之间的定量关系式之间的定量关系式之间的定量关系式之间的定量关系式47l当当P
39、P1 1时,即官能团时,即官能团a a完全反应完全反应l当当原料单体等当量比原料单体等当量比时时 即即 r=1 或或 q=0讨论两种极限情况:讨论两种极限情况:讨论两种极限情况:讨论两种极限情况:48aAa、bBb等物质的量,另加少量单官能团物质等物质的量,另加少量单官能团物质Cb Nc为单官能团物质为单官能团物质Cb的分子数的分子数摩尔系数和分子过量分率定义为摩尔系数和分子过量分率定义为:aAa单体的官能团单体的官能团a的残留数的残留数 NaNaPbBb单体的官能团单体的官能团b的残留数的残留数 NbNaP=NaNaP两单体官能团两单体官能团(ab)的残留数的残留数 2(NaNaP)体系中的
40、体系中的大分子总数大分子总数体系中的体系中的结构单元数结构单元数(即单体数)(即单体数)NaNc2代表代表1分子分子Cb中的中的1个基个基团团b相当于一相当于一个过量个过量bBb分分子双官能团子双官能团的作用的作用49和前一种情况相同,只是和前一种情况相同,只是 r 和和 q 表达式不同表达式不同u aRb 加少量单官能团物质加少量单官能团物质Cb(分子数为分子数为Nc)反应反应 摩尔系数和分子过量分率如下摩尔系数和分子过量分率如下:50 体系中的大分子数体系中的大分子数 NaNaPNc 体系中的结构单元数(即单体数)体系中的结构单元数(即单体数)NaNcl三种情况都说明,三种情况都说明,Xn
41、与与P、r(或或q)密切相关密切相关 l官能团的极少过量,对产物分子量就有显著影响官能团的极少过量,对产物分子量就有显著影响l在线形缩聚中,要得到高分子量,必须保持严格的等当量比在线形缩聚中,要得到高分子量,必须保持严格的等当量比当当当当a a的反应程度为的反应程度为的反应程度为的反应程度为P P1 1时时时时,小结小结小结小结:51例题例题:生产尼龙生产尼龙66,想获得,想获得Mn=13500的产品,采用的产品,采用己二酸过量的办法己二酸过量的办法,若使反应程度若使反应程度P=0.994,试求己,试求己二胺和己二酸的配料比二胺和己二酸的配料比解:当己二酸过量时,尼龙解:当己二酸过量时,尼龙6
42、6的分子结构为的分子结构为末端基团末端基团OH和和CO(CH2)4COOH的质量的质量结构单元的平均分子量结构单元的平均分子量则平均聚合度则平均聚合度则平均聚合度则平均聚合度52当反应程度当反应程度P=0.994时,求时,求r值值:己二胺和己二酸的配料比己二胺和己二酸的配料比根据根据根据根据己二酸的分子过量分率己二酸的分子过量分率己二酸的分子过量分率己二酸的分子过量分率53小小 结结影响因素影响因素p、K、nw分子量控制方法分子量控制方法端基封锁端基封锁原料非等摩尔或原料非等摩尔或加单官能团加单官能团计算公式计算公式542.9 体型缩聚与凝胶点的预测体型缩聚与凝胶点的预测1.1.体型缩聚体型缩
43、聚体型缩聚的含义体型缩聚的含义 指一指一2官能度单体与另一官能度大于官能度单体与另一官能度大于2的单体的单体先进行支化而后形成先进行支化而后形成交联结构的缩聚过程。体型缩聚的最终产物称为交联结构的缩聚过程。体型缩聚的最终产物称为体型缩聚物。体型缩聚物。体型缩聚物的结构与性能体型缩聚物的结构与性能 分子链在三维方向发生键合,结构复杂;分子链在三维方向发生键合,结构复杂;不溶不熔、耐热性高、尺寸稳定性好、力学性能强;不溶不熔、耐热性高、尺寸稳定性好、力学性能强;热固性聚合物的生产一般分两阶段进行热固性聚合物的生产一般分两阶段进行:预聚物制备阶段预聚物制备阶段:先制成:先制成预聚物(预聚物(prep
44、olymer)(分子量分子量 5005000)线型或支链型,液体或固体,可溶可熔线型或支链型,液体或固体,可溶可熔 交联固化阶段交联固化阶段:预聚物的固化成型:预聚物的固化成型 。在加热加压条件下进行。在加热加压条件下进行。55体型缩聚的特征体型缩聚的特征 反应进行到一定程度时会出现凝胶化现象:反应进行到一定程度时会出现凝胶化现象:在交联型逐步聚合反应中,随聚合反应的进行,体系粘在交联型逐步聚合反应中,随聚合反应的进行,体系粘度突然增大,失去流动性,反应及搅拌所产生的气泡无法度突然增大,失去流动性,反应及搅拌所产生的气泡无法从体系逸出,可看到从体系逸出,可看到具有弹性的具有弹性的凝胶或不溶性聚
45、合物的明凝胶或不溶性聚合物的明显生成。显生成。这一现象称为这一现象称为凝胶化;凝胶化;开始出现凝胶化时的反应程度(临界反应程度)称为开始出现凝胶化时的反应程度(临界反应程度)称为凝胶点凝胶点(Gel Point),用,用Pc表示。表示。56P Pc,丙阶聚合物,不溶、不熔丙阶聚合物,不溶、不熔预预聚聚物物体型缩聚的中心问题之一是关于凝胶点的理论。体型缩聚的中心问题之一是关于凝胶点的理论。出现凝胶点时,并非所有的功能基都已反应,聚合出现凝胶点时,并非所有的功能基都已反应,聚合体系中既含有能溶解的支化与线形高分子,也含有不溶体系中既含有能溶解的支化与线形高分子,也含有不溶性的交联高分子,能溶解的部
46、分叫做性的交联高分子,能溶解的部分叫做溶胶溶胶(Sol),不能),不能溶解的部分叫做溶解的部分叫做凝胶凝胶(Gel).交联高分子既不溶解也不熔融,加热也不会软化流交联高分子既不溶解也不熔融,加热也不会软化流动,称为动,称为热固性高分子热固性高分子(Thermoset).根据根据PPc关系,关系,体型聚合物分为三个阶段体型聚合物分为三个阶段:57说明说明:预聚物制备阶段和交联固化阶段,凝胶点的预测和预聚物制备阶段和交联固化阶段,凝胶点的预测和控制都很重要。凝胶点是体型缩聚中的重要指标。控制都很重要。凝胶点是体型缩聚中的重要指标。预聚阶段,反应程度如果超过凝胶点,将使预聚物预聚阶段,反应程度如果超
47、过凝胶点,将使预聚物固化在聚合釜内而报废。预聚物应用阶段,则须掌固化在聚合釜内而报废。预聚物应用阶段,则须掌握适当的固化时间,即到达凝胶点的时间。例如对握适当的固化时间,即到达凝胶点的时间。例如对热固性泡沫材料,要求其固化快,否则泡沫就要破热固性泡沫材料,要求其固化快,否则泡沫就要破灭。又如用热固性树脂制造层压板时,固化过快,灭。又如用热固性树脂制造层压板时,固化过快,将使材料强度降低。将使材料强度降低。1.1.实验测定时通常以聚合混合物中的气泡不能上升时实验测定时通常以聚合混合物中的气泡不能上升时的反应程度为凝胶点。凝胶点也可以从理论上进行的反应程度为凝胶点。凝胶点也可以从理论上进行预测预测
48、。2.体型缩聚的中心问题之一是体型缩聚的中心问题之一是体型缩聚的中心问题之一是体型缩聚的中心问题之一是关于凝胶点的理论关于凝胶点的理论关于凝胶点的理论关于凝胶点的理论582.凝胶点的预测(1)Carothers理论理论 当反应体系开始出现凝胶时,认为数均聚合度趋于无穷当反应体系开始出现凝胶时,认为数均聚合度趋于无穷大,然后根据大,然后根据 PXn关系式,求出当关系式,求出当Xn 时的反应程时的反应程度,即凝胶点度,即凝胶点Pc 分两种情况讨论:分两种情况讨论:两官能团等物质的量两官能团等物质的量l单体的单体的平均官能度平均官能度:是指混合单体中平均每一单体分子带有的官能团数是指混合单体中平均每
49、一单体分子带有的官能团数式中式中fi、Ni分别为第分别为第i种单体的官能度和分子数种单体的官能度和分子数59例如,求例如,求2 mol甘油(甘油(f=3)和)和 3 mol 苯酐(苯酐(f=2)的平)的平 均官能度。均官能度。l凝胶点与平均官能度的关系凝胶点与平均官能度的关系 设:设:体系中混合单体的起始分子总数为体系中混合单体的起始分子总数为N0 则则起始官能团数起始官能团数为为N0 f t 时体系中残留的分子数为时体系中残留的分子数为N 则凝胶点以前则凝胶点以前反应消耗的官能团数反应消耗的官能团数为为 2(N0N).根据反应程度的定义,根据反应程度的定义,t t 时参加反应的官能团数除以时
50、参加反应的官能团数除以起始官能团数即为反应程度起始官能团数即为反应程度(Xn=N0/N)因两种单体以等物质的量因两种单体以等物质的量混合,反应每一步消耗两混合,反应每一步消耗两个官能团,所以个官能团,所以,反应消反应消耗的官能团数为耗的官能团数为2(N0N)60产生误差的原因:产生误差的原因:实际上,凝胶时实际上,凝胶时Xn并非无穷大,仅为几十,此例为并非无穷大,仅为几十,此例为24这是这是Carothers理论的缺点理论的缺点.Carothers方程方程上述例子的凝胶点为上述例子的凝胶点为实测实测 P Pc c则则凝胶点凝胶点时的临界反应程度为时的临界反应程度为:出现凝胶化时,出现凝胶化时,