《《投资组合方案》word版.doc》由会员分享,可在线阅读,更多相关《《投资组合方案》word版.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、投资组合方案一、马科维茨理论和资本资产定价模型现代资产组合理论(Modern Portfolio Theory,简称MPT),也有人将其称为现代证券投资组合理论、证券组合理论或投资分散理论。最初是由美国经济学家哈里马科维茨(Markowits)于1952年创立的,他认为最佳投资组合应当是具有风险厌恶特征的投资者的无差异曲线和资产的有效边界线的交点。 现代资产组合理论的提出主要是针对化解投资风险的可能性。该理论认为,有些风险与其他证券无关,分散投资对象可以减少个别风险(unique risk or unsystematic risk),由此个别公司的信息就显得不太重要。个别风险属于市场风险,而市
2、场风险一般有两种,即个别风险和系统风险(systematic risk),前者是指围绕着个别公司的风险,是对单个公司投资回报的不确定性;后者指整个经济所生的风险无法由分散投资来减轻。虽然分散投资可以降低个别风险,但是,首先,有些风险是与其他或所有证券的风险具有相关性,在风险以相似方式影响市场上的所有证券时,所有证券都会做出类似的反应,因此投资证券组合并不能规避整个系统的风险。资本资产定价模型(Capital Asset Pricing Model 简称CAPM)是由美国学者夏普(William Sharpe)、林特尔(John Lintner)、特里诺(Jack Treynor)和莫辛(Jan
3、 Mossin)等人在资产组合理论的基础上发展起来的,是现代金融市场价格理论的支柱,广泛应用于投资决策和公司理财领域。资本资产定价模型就是在投资组合理论和资本市场理论基础上形成发展起来的,主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的。资本资产定价模型假设:第一,投资者是理性的,而且严格按照马科威茨模型的规则进行多样化的投资,并将从有效边界的某处选择投资组合;第二,资本市场是完全有效的市场,没有任何磨擦阻碍投资。其表达公式如下: 是资产i 的预期回报率 是无风险利率是Beta系数,即资产i 的系统性风险是市场m的预期市场回报率是市场风险溢价(market ri
4、sk premium),即预期市场回报率与无风险回报率之差。以资本形式(如股票)存在的资产的价格确定模型。以股票市场为例。假定投资者通过基金投资于整个股票市场,于是他的投资完全分散化(diversification)了,他将不承担任何可分散风险。但是,由于经济与股票市场变化的一致性,投资者将承担不可分散风险。于是投资者的预期回报高于无风险利率。系数表示了资产的回报率对市场变动的敏感程度(sensitivity),可以衡量该资产的不可分散风险。如果给定,我们就能确定某资产现值(present value)的正确贴现率(discount rate)了,这一贴现率是该资产或另一相同风险资产的预期收益
5、率 贴现率=Rf+(Rm-Rf)。二、 投资组合证券的选择基于证券之间的相关系数,选择有效投资组合的证券种别,实现投资组合多元化效应。依据每只股票2013年4-8月的月底收盘价格,计算相关系数以及投资报酬率等。4月5月6月7月8月002954比亚迪(A)24.5535.2929.9133.131.77000039中集集团(B)11.4612.810.3310.8212.48300240飞力达(C)9.2112.589.28.7910.78600016民生银行(D)9.8210.465.996.019.03000045深纺织A(E)7.899.676.687.347.93表1(数据来自于新浪财经
6、网)根据新浪财经网上相关信息,选取近期表现较好的几只股票作为投资组合的组成元素,并分别用字母A、B、C、D、E代表以上5只股票,便于后续分析。(一) 计算证券的投资报酬率、方差以及标准差5月6月7月8月平均报酬率方差标准差股票A0.437474542-0.1524511190.106653293-0.0401812690.0878738620.0655758390.256077798股票B0.116928447-0.192968750.0474346560.1534195930.0312034870.0242673960.15577996股票C0.365906623-0.268680445-0
7、.0445652170.2263936290.0697636470.0799497020.282753784股票D0.065173116-0.4273422560.0033388980.502495840.03591640.1447407350.380448072股票E0.225602028-0.3092037230.0988023950.0803814710.0238955430.0534807750.231259107表2(利用表1数据,通过Excel计算得出)报酬率等于每月末股票收盘价与上月末收盘价之差额与上月末收盘价的比率,即。方差及标准差是各种报酬率偏离期望报酬率的平均程度,是反映离
8、散程度的一种度量。计算公式为:(方差)(标准差)(二) 计算两两证券之间的相关系数(Correlation)相关系数表示两种证券的收益相关程度,是一个相对值指标,计算公式为:其中表示协方差,是表示两两证券收益相关程度的绝对值指标,计算公式如下:根据表2数据计算两两证券之间的协方差,如下:协方差相关系数股票AB0.0171245260.429274454股票AC0.0406660130.561631222股票AD0.0153002790.157047865股票AE0.0361855490.611032619股票BC0.0296359070.672818942股票BD0.0407131280.68
9、6953744股票BE0.0250205510.694522688股票CD0.0605640510.563003511股票CE0.0431882030.660477252股票DE0.0460318210.523195408表3(根据表2数据由Excel计算得出)由表可见所选5只股票的两两之间相关系数大多数处于0.5-0.7之间,在一定程度上能够降低投资组合的风险,因此所选择的股票能够实现投资组合多元化效应。三、 构建投资组合比例假设拥有10万元的现金进行投资,不引进无风险借贷,建投资组合比例如下,(一) 证券投资组合一1. 运用矩阵方法计算投资组合一的标准差确定各证券所占比例,A为30,B为2
10、0,C为20,D为20,E为10。股票A(0.3)股票B(0.2)股票C(0.2)股票D(0.2)股票E(0.1)股票A(0.3)0.0059018260.0010274720.0024399610.0009180170.001085566股票B(0.2)0.0010274720.0009706960.0011854360.0016285250.000500411股票C(0.2)0.0024399610.0011854360.0031979880.0024225620.000863764股票D(0.2)0.0009180170.0016285250.0024225620.0057896290.
11、000920636股票E(0.1)0.0010855660.0005004110.0008637640.0009206360.000534808方差0.042379648标准差0.205863177表4(注:根据表2和表3中相关证券的投资报酬率、协方差、方差通过Excel计算得出)2. 计算证券投资组合一的期望报酬率ABCDE所占比例0.30.20.20.20.1单个报酬0.0878738620.0312034870.0697636470.03591640.023895543表5投资组合一期望报酬率为0.05612842,计算如下:K1=0.3*0.87873862+0.2*0.0878738
12、62+0.2*0.087873862+0.2*0.087873862+0.1*0.087873862=0.056128423. 计算标准离差率标准离差率表示标准差与报酬率的比值,是相对值指标,计算如下,V1=0.05612842/0.205863177*100=27.2649149(二) 证券投资组合二1. 矩阵法求组合二的标准差确定投资比例,A为40,B为10,C为30,D为10,E为10。A(0.4)B(0.1)C(0.3)D(0.1)E(0.1)A(0.4)0.0104921340.0006849810.0048799220.0006120110.001447422B(0.1)0.000
13、6849810.0002426740.0008890770.0004071310.000250206C(0.3)0.0048799220.0008890770.0071954730.0018169220.001295646D(0.1)0.0006120110.0004071310.0018169220.0014474070.000460318E(0.1)0.0014474220.0002502060.0012956460.0004603180.000534808方差0.045399768标准差0.213072212表62. 计算期望报酬率ABCDE所占比例0.40.10.30.10.1单个报酬
14、0.0878738620.0312034870.0697636470.03591640.023895543表7投资组合二的期望报酬率为K2=0.065180182。3. 计算标准离差率V2=0.065180182/0.213072212*100=30.5906535(三) 证券投资组合三确定投资比重,A、B、C、D、E个占20。1. 矩阵法求组合标准差A(0.2)B(0.2)C(0.2)D(0.2)E(0.2)A(0.2)0.0026230340.0006849810.0016266410.0006120110.001447422B(0.2)0.0006849810.0009706960.00
15、11854360.0016285250.001000822C(0.2)0.0016266410.0011854360.0031979880.0024225620.001727528D(0.2)0.0006120110.0016285250.0024225620.0057896290.001841273E(0.2)0.0014474220.0010008220.0017275280.0018412730.002139231方差0.04307498标准差0.207545128表82. 计算期望报酬率ABCDE所占比例0.20.20.20.20.2单个报酬0.0878738620.031203487
16、0.0697636470.03591640.023895543表9期望报酬率K3=0.0497305883. 计算标准离差率V3=0.049730588/0.207545128*100=23.9613372(四) 证券投资组合四确定投资比重,A为60,B、C、D、E各为10。1. 矩阵法求标准差A(0.6)B(0.1)C(0.1)D(0.1)E(0.1)A(0.6)0.0236073020.0010274720.0024399610.0009180170.002171133B(0.1)0.0010274720.0002426740.0002963590.0004071310.000250206
17、C(0.1)0.0024399610.0002963590.0007994970.0006056410.000431882D(0.1)0.0009180170.0004071310.0006056410.0014474070.000460318E(0.1)0.0021711330.0002502060.0004318820.0004603180.000534808方差0.044647925标准差0.211300557表102. 计算期望报酬率ABCDE所占比例0.60.10.10.10.1单个报酬0.0878738620.0312034870.0697636470.03591640.02389
18、5543表11K4=0.0688022253.计算标准离差率V4=0.068802225/0.211300557*100=32.5613079四、 确定最佳投资组合构成比例期望报酬率标准差标准离差率投资组合一(0.3,0.2,0.2,0.2,0.1)0.056128420.20586317727.2649149投资组合二(0.4,0.1,0.3,0.1,0.1)0.0651801820.21307221230.5906535投资组合三(0.2,0.2,0.2,0.2,0.2)0.0497305880.20754512823.9613372投资组合四(0.6,0.1,0.1,0.1,0.1)0.
19、0688022250.21130055732.5613079表12(一) 风险收益定量分析不考虑投资的风险偏好类型,假定所有投资者风险偏好相同。1. 期望报酬率、标准差比较从表12中可得,就期望报酬率言,组合四的期望报酬率最高,收益最强,但是组合四的风险也是比较大的;从风险最小角度来看,投资组合一的标准差最小,风险最小,但同时期望也比较小。由于各投资组合风险不同,因此引进标准离差率进行分析。2. 标准离差率比较标准离差率表示每承担一单位风险所获得的收益,因此标准利差率越大说明此证券投资组合越有效,从表12得出,组合四的标准离差率最大,因此,组合四是最好的投资组合。(二) 构造有效投资组合有效投
20、资组合是指在任何风险程度下获得最高期望报酬率,或在任何期望报酬率下承担最低风险的一种投资组合。无差异曲线,是能给投资者带来相同预期效用的投资组合点的轨迹,反映了不同投资者对于风险的态度,同一投资者可能有若干条无差异曲线,构成无差异曲线族。相对而言,风险偏好者的无差异曲线比风险规避者的无差异曲线陡峭,意味着对于相同的标准差增加值,风险规避者要求更高的期望报酬率作为补偿。图1中蓝色部分曲线为无差异曲线族,黑色边界内区域表示可能的投资组合,二黑色边界上方部分表示有效投资组合边界。根据无差异曲线判断,投资者相对而言是一个风险规避者,无差异曲线与有效边界的切点为此投资者的最有投资组合,此处代表投资组合一
21、。因此在引入现代证券理论后,最优投资组合改变。并不是单纯从风险与收益来判断最优组合,而是结合不同投资者的风险类型,引入无差异曲线,构造有效投资边界,无差异曲线与有效投资边界的切点即为该类型投资者的最优组合,而此时的最优组合不一定就是标准离差率最大的投资组合。图1五、 资本资产定价模型根据最新公布,银行一年期存款基准利率为3,视同为无风险利率。整个市场的平均报酬率为7,证券投资组合一的值为:单个股票值投资比重A(比亚迪)0.69800.3B(中集集团)0.56000.2C(飞利达)0.13460.2D(民生)0.50580.2E(深纺织A)0.86000.1组合的值0.53548表13资本资产定
22、价模型计算必要报酬率,投资组合一的必要报酬率Kp=3+0.53548*(7-3)=0.0514192,投资组合一的实际报酬率为0.05612842大于必要报酬率,故此投资方案可行。六、 具体投资方案拥有投资资金10万元,按最优投资组合一分配资金,投资组合一构成比例:A为30,B为20,C为20,D为20,E为10。即用3万元购买比亚迪股票,2万元购买中集集团股票,2万元购买飞力达股票,2万元购买民生银行股票,1万元购买深纺织A的股票。平均报酬率为0.05612842,即投资一年的平均报酬额为100000*0.05612842=5612.842元。而同期银行定期存款利率为3,将10万元钱存入银行一年所获得利息为100000*3=3000元。显然将10万元用于投资组合一的收益率要远高于银行同期存款利率,且高出幅度为87.09。