碳纤维行业深度报告:需求高景气_全产业链成长可期.docx

上传人:X** 文档编号:53595751 上传时间:2022-10-26 格式:DOCX 页数:58 大小:4.43MB
返回 下载 相关 举报
碳纤维行业深度报告:需求高景气_全产业链成长可期.docx_第1页
第1页 / 共58页
碳纤维行业深度报告:需求高景气_全产业链成长可期.docx_第2页
第2页 / 共58页
点击查看更多>>
资源描述

《碳纤维行业深度报告:需求高景气_全产业链成长可期.docx》由会员分享,可在线阅读,更多相关《碳纤维行业深度报告:需求高景气_全产业链成长可期.docx(58页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、碳纤维行业深度报告:需求高景气_全产业链成长可期1. 下游应用场景不断扩展,十四五产能扩张与需求放量并行1.1 碳纤维市场应用场景广泛,由高端制造业逐渐进入日 常生活碳纤维各方面性质优势明显,具有较强减重加固效果:碳纤维是一种含碳量在 90%以上的高强度高模量纤维,直径约 5 至 10 微米,主要由碳原 子组成。碳纤维在风电叶片、航空航天、土木工程、军事和赛车运动以及其他竞技运动 应用中广受欢迎。作为各类产业制造过程中的原材料,碳纤维具有以下特点:1)强度高: 抗拉强度在 3,500MPa 以上;2)模量高:弹性模量在 230GPa 以上;3)密度小:密度是 钢的 1/4,是铝合金的 1/2;

2、4)比强度高:比钢大 16 倍,比铝合金大 12 倍;5)耐超高 温:在非氧化气氛条件下,可在 2,000C时使用,在 3,000C的高温下部熔融软化;6)耐 低温:在-180C低温下,钢铁变得比玻璃脆,而碳纤维依旧具有弹性;7)耐酸、耐油、 耐腐蚀:能耐浓盐酸、磷酸等介质侵蚀,其耐腐蚀性能超过黄金和铂金,同时拥有较好 的耐油、耐腐蚀性能热膨胀系数小;8)导热系数大:可以耐急冷急热,即使从 3,000C 的高温突然降到室温也不会炸裂。碳纤维复合材料下游应用主要包括航空航天、体育设施、工业和风电设备行业等其他领 域,在绿色能源和新型材料发展的带动下,中国碳纤维复合材料的下游应用领域逐步扩 大,开

3、始在汽车制造、建筑交通等方面布局,并进一步加大了在风电设备领域的产业应 用。碳纤维军工应用市场需求稳定,民用市场逐渐打开:全球碳纤维市场应用范围逐渐拓展。2020 年应用分市场数据显示,从数量方面看,碳纤 维在风电叶片中的应用排在首位,达 30600 吨,占全部市场需求的 28.64%;其次为航空 航天方面,应用需求量为 16450 吨,占比为 15.39%。体育休闲行业是碳纤维最忠实的支持者,一直保持着 15%左右的市场份额。汽车行业中采用碳纤维材料的车型越来越丰富, 尤其实新能源汽车,在制造过程中,许多部件(如电池盒)都用到了碳纤维材料,2020 年需求应用共 12500 吨,占市场总需求

4、的 11.70%。从金额方面看,碳纤维在航空航天中的应用占据了全球 37.75%的份额,共得金额 9.87 亿 美元;其次为风电叶片,2020 年度共有 4.28 亿美元的需求,占全球份额的 16.38%。另外, 金额市场份额超过 10%的只有体育休闲方面的应用,共得 3.54 亿美元,占市场总需求比 例为 13.55%。碳纤维材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于 战机主结构、次结构件和战机特殊部位的特种功能部件。在国外的技术中,常使用碳纤 维/环氧和碳纤维/双马复合材料来制作战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位, 可以起到减重的作用。除军事武器外,碳纤

5、维材料还广泛应用于民用飞机中。碳纤维增强塑料(CFRP)常用于建 造飞机的重量部件,如减速板、方向舵、升降舵、副翼、襟翼扰流板、起落架舱门、整 流罩、垂尾翼盒、方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、 水平尾翼和副翼等。航天方面,由于碳纤维材料具有轻,刚性,尺寸稳定性和导热性好的特点,人造卫星结 构体、太阳能电池板和天线中也用到了这种原材料。空间站及一些关键部件的制造均使 用到了碳纤维材料。从全球市场趋势来看,碳纤维在航空航天中应用的需求逐步提升,2020 年由于疫情影响 全球空中交通客运量,导致各类飞机的产能也相应减少,当年仅 16450 吨。随着航空航 天领域的缓慢复

6、苏,赛奥碳纤维技术有限公司预测碳纤维在航空航天领域的应用将在 2024 年恢复到 2019 年的需求水平。风电叶片一直是碳纤维材料应用的主要领域,是最具有前景的领域之一。风电机组极大 程度上拉动了碳纤维的需求,碳纤维材料轻便的特点使得风电叶片的整体质量有了较好 的优化,保证叶片在长度增加的同时,重量更轻。且碳纤维复合材料纤维含量高,质量 稳定,连续成型易于自动化,适合大批量生产。全球市场上,碳纤维材料在风电叶片中的应用需求处于快速增长的趋势。在风电产业也 快速扩张的情况下,碳纤维在这方面的产能也将以较高速度不断拓展。预计在 2025 年将 达到 93384 吨的全球市场需求。碳纤维材料在竞技体

7、育与日常健身中均有涉及,前者看重体育器材的质量以及对运动的 助力,后者更注重性价比。在竞技体育项目中,体育器材对运动员的发挥也起到了一定 的辅助作用,利用碳纤维材料强度高、重量轻的优势,制造出的趁手的球拍/球杆能够帮 助运动员在比赛场上更加稳定地发挥出自己的实力。网球拍、高尔夫球杆、自行车、钓 鱼竿等器材中碳纤维材料的使用率较高,逐渐渗透至人们日常健身生活中。随着 2021 年 我国国务院发布的关于全民健身计划的通知,预计对碳纤维体育器材的需求会持续提升。受疫情影响,群体性运动的器材如曲棍球 2020 年产量下降,个人体育器材如高尔夫球杆、 自行车、钓鱼竿产量反而上升。总体趋势是一直处于稳定增

8、长状态的,预计 2025 年需求 量达到 19655 吨。在汽车行业,碳纤维材料可以用来制作汽车架构、车身等,利用其密度小的特点,可以 使汽车更加轻量化,促进节能减排;同时由于碳纤维复合材料可塑性强,更有利于构建 车身整体结构,简化工艺流程;碳纤维材料能量吸附性强,在突发情况发生时,能够在 较好程度上吸收受到撞击的能量,从而减小震动效果,安全性能得到极大提升。新能源市场的扩张带动了新能源汽车产业的发展,碳纤维在汽车行业的应用需求也一直 处于平稳发展的态势中。随着环保化的普及,高性能轻量材料越来越受欢迎,碳纤维在 汽车行业中也将拥有更广阔的发展市场。氢燃料等燃料物资通常装配在储氢瓶中,在储氢瓶的

9、制造过程中的重点及核心技术在于 碳纤维全缠绕工艺,碳纤维重量占比最多可达 57%。目前国内能够大规模生产供应高性 能碳纤维 T700 储氢瓶的以中复神鹰为主力军。2020 年氢能产业发展迅速,逐渐随着新能源电池、汽车等生活方式融入人们的日常生活 中,相应的碳纤维压力容器订单供不应求。在产品订单数量较大时,性价比以及规模生 产能力或将成为碳纤维制造企业的核心竞争力。未来碳纤维在压力容器中的需求应用预 计将保持稳定增长的态势,更好地为能源储备提供服务。混配模成型是一种成熟工艺,混配指非连续碳纤维增强塑料,主要包括短切增强和长纤 维增强热塑性材料(LFT);模成型主要指片状模塑料(Sheet Mol

10、ding Compound,SMC) 以及团状模塑料(Bulk Molding Compound,BMC)。碳纤维技术的加入让这些非连续形 态的模块有了更广阔的的发展空间。碳纤维在混配模成型领域的应用参考了玻璃纤维复合技术,具有高效低成本的优势,同 时与玻璃纤维存在竞争关系。未来碳纤维复合技术还需要继续研发自己的特质,显示其 更具有竞争力的力学性能。碳纤维加固技术目前已达国际一流水准,被广泛应用于建筑加固工程中。由于碳纤维加 固施工法操作较为简单,且工程量较一般的加固施工更小,因此属于高效的加固方式, 不仅节省时间,也能有效降低施工成本,成为了首选。除此之外,选择使用碳纤维复合 材料进行建筑加

11、工更加环保,且材料耐久性强,延长了建筑结构的寿命。碳碳复材具有低密度、高强度以及抗热性能好、稳定性高等特点,是目前最有前途的高 温材料之一,2020 年,碳碳复材的发展市场主要在刹车盘市场、航天部件以及热场部件。 随着未来光伏市场的持续高速增长,碳碳复材对于单晶炉的供应也会随着高速发展,赛 奥碳纤维技术有限公司预计 2025 年碳纤维在碳碳复材的领域应用需求将达 18565 吨。碳纤维在电子电气行业的应用分为多个方面。首先在功能性领域,复印机、打印机、数 码相机中使用的短切碳纤维增强塑料具有防静电及电子屏蔽的功能,且相对于传统的金 属类材料,成本更低;在力学能力增强方面,大量被应用的碳纤维材料

12、为长碳纤维增强 塑料(LFT)和连续碳纤维增强材料,利用它们抗压、强度高的特点,在热塑方面既保持 了长度也保证了均匀分散的性质。目前市场上,笔记本电脑的散热装置也使用到了碳纤维技术。2020 年,美国 KULR Technology Group 称,公司已开始着手将碳纤维制备成绒,由于微纤维的散热面积较大, 一种新的热管理技术进入大众视野。碳纤维在船舶行业的应用市场中主要涵盖竞赛类船舶、超豪华游艇、高速客船及军事用 途的船舶。根据美国国家船舶制造商协会报告统计数据,2020 年的新冠疫情非但没有影 响船舶市场,反而船舶市场的增长创造了新高,其中,水翼船的发展是关键,在制造过 程中运用了碳纤维复

13、合材料。碳纤维复合芯导线相较于传统钢芯铝绞导线,可消除磁损,运输效率远高于后者;且碳 纤维复合材料膨胀系数小、强度高,不易变形,同时降低建造成本。2020 年全球电缆芯 碳纤维需求量为 1000 吨,较 2019 年有所下降。1.2 市场产能高速扩张,十四五政策推进加强,需求进一 步增加2015 年至 2020 年中国碳纤维总需求由 16808 吨增长至 48851 吨,期间 CAGR 达 23.79%, 每年增长率分别为16.50%/20.00%/32.00%/22.00%/29.10%。其中 2020 年进口 30351 吨, 同比增长 17.46%,国产 18500 吨,同比增长 54.

14、17%。我国碳纤维进口市场需求增长率五年来分别为11.57%/0.84%/36.77%/17.37%/17.46%,国 产碳纤维需求量整体增长速度更高,分别为44.00%/105.56%/21.62%/33.33%/54.17%。在 国产碳纤维技术迅速发展的今天,2020 全球碳纤维复合材料市场报告中预测,未来三 年内国产碳纤维将会超过进口量。0%。其中 2020 年进口 30351 吨, 同比增长 17.46%,国产 18500 吨,同比增长 54.17%。我国碳纤维进口市场需求增长率五年来分别为11.57%/0.84%/36.77%/17.37%/17.46%,国 产碳纤维需求量整体增长速

15、度更高,分别为44.00%/105.56%/21.62%/33.33%/54.17%。在 国产碳纤维技术迅速发展的今天,2020 全球碳纤维复合材料市场报告中预测,未来三 年内国产碳纤维将会超过进口量。碳纤维产业一直被政府高度重视,国家近 10 年出台了一系列关于碳纤维及碳纤维复合材 料的产业支持政策,持续引导并进一步提升碳纤维材料重点品种的关键生产和应用技术。 其中,2015 年 5 月国务院发布的中国制造 2025中对国家碳纤维及复合材料技术发展 制定未来发展指标要求;2016 年 8 月中国科学院提出的中国科学院“十三五”发展规 划纲要中将碳纤维及其复合材料核心关键技术列入科技创新 20

16、30 重大工程;2019 年 10 月,国家发改委发布产业结构调整指导目录(2019 年本),将碳纤维等高性能纤维 及制品的开发、应用和生产列为国家产业架构调整指导目录的鼓励类项目,推进碳纤维 产业的发展。2021 年 3 月,中华人民共和国国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要中提出,要加强碳纤维等高性能纤维及其复合材料的研发应用, 为未来碳纤维行业的技术进步提供良好的政策环境。国家的大力支持、技术的不断更新,为碳纤维产业的科研提供了良好的环境,对相关公 司的生产与销售、各类应用场景的发展做出了高度肯定。2. 风电需求装机量增大,渗透率不断提升2.1 风电叶片是国内最

17、大的碳纤维市场,受益于“双碳” 政策,未来增量空间可观风力作为一种清洁能源,先于光伏发电受到全球各国的青睐,近十几年以来经历了全球 化的高速增长。风力发电是指利用风力发电机组直接将风能转化为电能的发电方式。在 风能的各种利用形式中,风力发电是风能利用的主要形式,也是目前可再生能源中技术 最成熟、最具有规模化开发条件和商业化发展前景的发电方式之一。根据2020 全球碳纤维复合材料市场报告的数据,对比 2020 年全球和中国的碳纤维需 求市场,风电叶片均为碳纤维下游最大的市场,分别占比 28.27%和 40.90%,对比 2019 年的需求量,依然保持在 20%的强劲增长。对比遭受重挫的航空航天市

18、场(主要受影响 的是民用航空、公务机),用量急剧降低。风电市场的增长潜力非常巨大,这有待于维斯 塔斯之外的其他风电巨头企业,尤其是中国风电企业批量使用碳纤维。2.1.1 风电未来增长空间广阔,进一步拉动碳纤维需求量根据 GWEC 的数据,2020 年全球新增风电装机为 93GW,比 2019 年增加了 53%,面对 新冠疫情风电行业显示出强劲韧性。全球风电累计装机达到 742GW。作为有成本优势、 有韧性、有最大脱碳潜力的电力品种,风电能够成为绿色复苏及碳中和的重要基石。2020 年是风电行业历史上表现最好的一年,全球新增风电装机 93GW,比 2019 年增加了 53%。全球风能理事会(GW

19、EC)在最新发布的年度报告中指出,如果要实现 2050 年全 球净零排放的目标,现在的发展速度是不够的,为了实现全球净零排放的目标,风电装 机速度在未来十年中要提高两倍。随着近年来对环境的整治力度加大,我国逐渐从煤炭发电转向环保的风力发电,风力发 电量逐年增长,如今已成为风能利用的主要形式。2019 年中国风电发电大幅增长到 4057 亿千瓦时,增长率高达 10.85%;2020 年,全国风电发电量为 4665 亿千瓦时,同比增长 14.99%。在国家重视并大力支持风电行业的背景下,我国风电装机容量呈现出加速增长的态势, 2020 年全国新增装机容量 7167 万千瓦,同比增长 81.8%;累

20、计装机容量为 28153 万千瓦, 同比增长 24.1%。2021 年前四个月,我国风电装机累计新增规模达 28,744 万千瓦,较 2020 年底增加 660万千瓦,增速达 86%,高增速延续。随着技术进步和产业规模扩大,全球风电装机量已经是十年前的近四倍,风能也在世界 范围内成为最具竞争力的电源之一。2020 年的创纪录增长主要归功于中国和美国,这两 个最大的风能市场贡献了全球新增装机的 75%,而累计装机量也达到了全球的一半。国内风电碳纤维需求强劲。根据 GWEC 的数据,2020 年,全球风电装机累计容量达到 743GW,同比增长 14.21%。根据 GWEC 的预测到 2025 年风

21、电累计装机容量将在这五 年保持复合增速 9%。2020 年,从风电对碳纤维的需求分析,维斯塔斯依然是主力;其他巨头,如西门子-歌美飒、GE-LM、Nordex 等均在新的机型中采用了碳纤维拉挤板制造与测试样机。2.1.2 风电叶片大型化,碳纤维逐步替代玻纤趋势确立目前全球风电巨头为了降低风电的度电成本,提升产品盈利能力,均采用了风电叶片大 型化、轻量化的发展目标。为降低成本,必须增加发电时间,提升风机捕捉风能的能力, 其中一个最主要的途径就是增加叶片的扫风面积、增大叶片的直径。据统计,风电叶片 尺寸迅速发展,2010 到 2019 年,叶片的长度从 100 米逐步增长到 125 米,预计未来

22、叶片尺寸还将进一步增大到 150 米甚至更高。随着叶片的长度逐渐增加,对于叶片的质量控制便提出了更高的要求。据了解,传统的 叶片制造材料主要为玻璃纤维复合材料,但玻纤叶片重量比较大,已经无法满足风电叶 片大型化的发展趋势。而碳纤维复合材料比玻璃纤维复合材料具有更低的密度,更高的 强度,可以保证风电叶片在增加长度的同时, 大大降低叶片重量。根据 GE 的分析结果显示,到 2025 年风轮直径将从现在的 100m 扩大到 160m,IEA 的分析也可以得出类似的结论。由此可见,为了提高风机效率,满足更广泛的风场条件, 现在业界已经形成共识:风轮直径扩大是风电未来的发展趋势。风轮直径扩大,必然导致叶

23、片刚度下降,更加容易变形。如何在一定控制质量的前提下, 提高叶片刚度,是风电叶片设计必须要考虑的问题。碳纤维(主要是大丝束碳纤维)作 为质量轻、强度高、模量高的新型材料在风电叶片领域的应用必将进一步提升。2.1.3 海上风电发展势头迅猛,功率更大,对碳纤维轻量化需求更为强烈海上风电细分市场先天优势明显,市场发展潜力巨大:现今全球风电开发仍以陆上风电 为主,但海上风电具有资源丰富、发电效率高、距负荷中心近、土地资源占用小、大规 模开发难度低等优势,被广泛认为是发电行业的未来发展方向。近年来,伴随着全球海上风电技术逐渐成熟和新型市场异军突起,全球可开发的海上风 电区域在不断增加,产业保持快速发展。

24、根据全球风能理事会统计,2010-2020 年全球海 上风电累计装机容量年复合增长率超过 28%。2019 年,全球海上风电累计装机容量达 29.1GW,同比增长约 26%,占全球风电累计装机约 4%;全球海上风电新增装机容量 6.1GW,较 2018 年增长约 41%,占全球风电新增装机容量 10%。2020 年中国海上风电新增装机量达 306 万千瓦,较 2019 年增加了 108 万千瓦,同比增长 54.5%。将我国海上风电新增装机量与风电行业新增装机总量进行比较,自 2015 年起中 国海上风电新增装机量占风电行业新增装机总量的比例逐年攀升,2020 年较 2019 年大幅 下滑,20

25、20 年中国海上风电新增装机量占风电行业新增装机总量的 4.27%,较 2019 年减 少了 3.42%。随着陆地上的优质资源逐渐被开发利用,人类开始转向面积更广、资源更为丰富的海洋, 海上风力发电成为关注焦点。海面平坦,风速一般较大,且海上建设风电场可以降低土 地使用费。更为重要的是,沿海地区多为人类生活密集区域,用电负荷高,有利于海上发 电就近消纳、弃风风险低这些都是海上风电在全球范围内快速发展并被普遍看好的重要 原因。2020 年中国海上风电累计装机量达 900 万千瓦,较 2019 年增加了 307 万千瓦,同 比增长 51.8%,未来将继续保持增长趋势。中国海上风电累计装机量占风电行

26、业累计装机总量的比例逐年攀升,2020 年中国海上风 电累计装机量占风电行业累计装机总量的 3.20%,较 2014 年的 0.69%增长了 2.50%。碳纤维复合材料在航空发动机领域的发展:政策引导驱动下,海上风电装机容量将快速增长:在国家能源局制定的风电发展规划 中,确定了海上风电开工建设项目规模达到 10GW、累计并网容量 5GW 以上的目标。同 时,国家能源局 2018 年 5 月发布关于 2018 年度风电建设管理有关要求的通知,落实 建设海上风电竞价模式,加快海上风电建设并网及转型升级进度。此外,国家发改委、 国家能源局 2019 年 5 月发布关于建立健全可再生能源电力消纳保障机

27、制的通知,将 可再生能源配额正式落地,为风电、光伏平稳成长保驾护航,海风资源丰富的沿海经济 发达省份发展海上风电的积极性提高较大。同时,浙江、福建、广东等沿海省市也已出 台海上风电发展相关政策。未来,在我国大力开展产业结构和能源结构调整、加快实现高质量发展和绿色发展的背 景下,我国海上风电将实现持续快速发展。根据国网能源研究院发布的中国新能源发 电分析报告 2019预测,“十四五”期间海上风电发展将进一步提速。根据江苏、广东、 浙江、福建、上海等省市或地方已批复的海上风电发展规划规模测算,期间预计全国新 增海上风电装机容量约 25.0GW;至 2025 年底,我国海上风电累计装机容量将达到 3

28、0.0GW 左右,80%装机集中在江苏、广东、福建等省份,且江苏、广东有望建成集中连片开发的 千万千瓦级海上风电基地。2030 年底,我国海上风电累计装机将超过 60GW,占全国风 电累计装机容量的比例约为 12%。2.2 碳梁技术有望大规模应用,或将带动碳纤维需求的快 速增长2.2.1 VESTAS 的碳梁技术助力打开碳纤维在风电领域的应用之门在提高风能的成本效益并延长发电机的使用寿命的目标下,将碳纤维应用在风电领域有 诸多优势,(1)重量轻,碳纤维材料有助于减轻叶片重量并增加长度,而不会影响刚度 和强度。(2) 优化叶片性能,使用碳纤维叶片增强件可以设计更长,更轻,效率更高的 叶片。简单来

29、说,风电碳梁的好处就是刚度和成本之间达到了极好的平衡,使叶片轮廓 更加纤细,从而提高了空气动力学效率,使风力涡轮机叶片更轻,更长,更硬且更坚固, 从而整体上更加高效,从而降低了能源的平均成本和更高的年度能源产量。过去主要是工艺主要为真空袋压成型和真空导入,有效率低、成本高等劣势。按此类的 材料与工艺,只有 40 米以上的风电叶片(即风轮直径 80 米,功率 1.8 兆瓦以上)使 用碳纤维替代玻璃纤维才可能被用户接受。而在 VESTAS 新的结构工艺下,碳纤板材拉 挤成型的碳梁应用拥有广阔的前景。高效、低成本、高质量的碳纤维拉挤梁片工艺,使得碳纤维使用成本大幅降低。VESTAS 这种用新设计和新

30、工艺制造的碳纤维主梁,完成技术攻关后,碳纤维在风电领域的使用 量进入快速增长。2.2.2 VESTAS 专利到期在即,碳纤维渗透率有望在风电领域实现 持续增长Vestas 在 2002 年 7 月 19 日分别向中国/丹麦等国家知识产权局、欧洲专利局、世界知 识产权局等国际性知识产权局申请了以碳纤维条带为主要材料的风力涡轮叶片的相关专 利,专利权利要求包含了制造预先预制的条带的方法和制造风力涡轮机叶片的方法。2022 年,Vestas 的碳梁专利保护将到期,由于碳纤维材料应用在风电叶片上有着诸多无 法代替的优势,因此我们认为届时其他风电叶片制造商将推出应用碳梁的风电叶片产品, 将为碳纤维在风电

31、领域贡献非常大的增量市场。根据2020 全球碳纤维复合材料市场报告中的数据,2020 年我国风电叶片所需碳纤维 达到 30600 吨,同比增长 20%,成为我国碳纤维产业重要增长点。据其预测显示,2025 年我国风电叶片所需碳纤维将有望达到 9.34 万吨。在风电单机大容量以及海上风电高速发展的背景下,未来碳纤维在风电领域的渗透 率有望持续提升:根据风电叶片用碳梁的生产技术及性能研究的数据显示,风力发电装备现大多使用 玻璃纤维增强材料制造,但当风力发电机功率高于 3MW,相应叶片长度超过 40m 时,玻 璃纤维性能已无法满足叶片的使用要求,碳纤维则成为叶片制造中的首选材料。按照 Vestas

32、官方披露数据显示,公司 2020 年交付量为 17GW,其中超过 4MW 的订单占 总订单的比例为 63%。而目前我国风电领域在这一方面的与 Vestas 还稍显差距,根据金 风科技透露的销售结构显示,3/4S 平台机组(3MW-4MW)的销售容量明显增加至 1434MW, 同比提升 104.6%,占比从 2019 年的 8.6%提升至 11.1%,6/8S 平台机组(6MW-8MW) 实现销售容量 482MW,同比提升 90.2%,占比 3.7%。大容量机组增速明显,但总体份额 和国际巨头企业相比较,还略显差距,未来提升空间巨大。根据金风科技公布的销售结构显示,截至 2020 年底,超过 3

33、MW 的产品销售占比约为 14.8%,根据 Wood Mackenzie 预计的数据显示,中国 2025 年单机功率在 3MW 以上的风 电将有望达到 80%以上,而到 2029 年这一数据将超过 90%。海上风电将成为未来碳纤维需求的核心增量,由于海上风速高,因此海上风机的单机容 量一般都远远高于陆上风机,正因如此,海上风机对于轻量化的碳纤维材料的需求更为 强烈。综合来看,我们认为未来风电行业对于碳纤维的需求量有望超出预期。3. 航空航天用量伴随十四万军民两用装备放量,需求快速扩张3.1 碳纤维在航空航天领域的市场分布及预测根据2020 全球碳纤维复合材料市场报告的数据显示,截至 2020

34、年航空航天领域用量为 1.65 万吨,根据预测到 2025 年用量将达到 2.62 万吨,年均复合增长率达到 9.68%。3.2 碳纤维在航空领域的应用航空飞机结构分为主要结构(又称初级结构)和辅助结构(又称次级结构)两大类。其 中初级结构包含重要结构和其他主要结构。重要结构指传递飞行、地面或者增压载荷的 关键结构部件或者关键结构组件,结构件一旦失效,将导致飞机灾难性事故。次级结构 仅传递局部气动载荷或者自身质量力载荷的结构,结构失效不影响结构持续适航性/飞行 安全。大多数次级结构主要作用为保证飞机气动外形、降低飞行。碳纤维复合材料由最 初应用在航空飞机的次级结构件,到逐渐用于航空飞机的初级结

35、构。碳纤维复合材料在军机领域的发展,从次级结构到初级结构:根据高性能碳纤维在航空领域的应用中的说明,碳纤维复合材料在军机的应用研究 始于上世纪 70 年代,美国战斗机 F-15E 的碳纤维复合材料含量 2%,到 1976 年原麦道公 司研制的 F/A-18 首次含碳量超过 10%,后经进一步的碳纤维技术突破,上升到 19%,包 含 12 块机身蒙皮、10 快进气管蒙皮和 4 块水平尾翼蒙皮。2006 年的美国“闪电II”的 F-35 战机,碳纤维复合材料占比 35%,应用部位从垂尾及平尾蒙皮、方向舵、减速板等 次级结构,扩大至机身、机翼、进气道、操纵面、副翼、垂尾等初级结构。国外碳纤维技术的发

36、展远早于国内,根据航空复合材料技术、碳纤维及其复合材料 技术等资料的数据显示,目前国外军机上碳纤维复合材料用量约占机重 20%50%,而 根据央视披露,我国最新的战斗机歼-20 的含碳量大约在 20%左右,直升机和运输机碳纤 维含量更低,距离国外仍有不小的差距。根据 Flight Global 的数据,2020 年我国军用飞机数量达到 3260 架,相较于美国 13232 架 和俄罗斯的 4143 架具有一定的差距,若看齐美国军用飞机数量,中国至少有 10000 架的 上升空间,碳纤维复合材料的利用也将成为未来空间较大的一部分。碳纤维复合材料在民机领域的发展:在上世纪 90 年代军机中碳纤维复

37、合材料应用比例大幅增加后,国外逐渐在商用飞机中增 加碳纤维复合材料用量。根据碳纤维及其复合材料技术的数据显示,目前碳纤维复 合材料再波音 787 和空客 A350 商业民用飞机中用量也达到 50%以上。波音 B787 飞机中 的碳纤维材料应用在机翼、机身、垂尾、平尾、机身地板梁、后承压框等部位,是全球 首个同时采用碳纤维复合材料机翼和机身的大型商用客机。空客 A350XWB 采用最新的 空气动力学设计,在机身和机翼大量采用碳纤维复合材料,以及新型节油的劳斯莱斯发 动机,使整体飞机燃油消耗和排放降低了 25%。C919 中型客机是我国第一种自主研发的民用飞机,由中航商用飞机发动机有限责任公司 设

38、计和承担,意图打破美国波音和欧洲空客在客机市场上的垄断地位,填补国产客机的 空白,代表我国机械制造业的发展进步,也受到了国家的大力扶持。根据中国商飞的披 露的数据显示,我国国产客机 C919 目前的碳纤维复合材料占比为 12%,而与俄罗斯合作 的下一代 CR929 机型碳纤维复合材料占比预计将达到 50%。根据中航高科的年报显示,公司目前已完成 CR929 项目 4 米级坠撞壁板交付和桶段坠 撞实验,通过了中国商飞特种工艺能力鉴定和供应商综合能力评估,并且参与 C919 复合 材料尾翼优化项目;且与航空工业通飞签订 AG600 复合材料结构框架合作协议;未来我 国相关企业在民机方面的技术、能力

39、和相关资质将得到提升。碳纤维复合材料在航空发动机领域的发展:碳纤维复合材料的低密度可减轻风扇及发动机质量,耐高温、高比强度和高模量等特性 会优化发动机构件,如整体叶盘、整体叶环、空心叶片和对转涡轮等结构的性能,提高 抗疲劳性、抗损伤性,扩大缺陷容限等。先进复合材料也是实现更高涵道比和减重的唯 一途径,使涡扇发动机在低重量低油耗的情况下具备更大的推力。与金属钛合金叶片相 比较,复合材料叶片具有明显的优势,根据复材网的信息,复合材料叶片数量比钛合金 叶片数量减少 50%,减轻质量 66%;高效率、低噪声;较低燃油消耗率;在抗振特别是 抗颤振方面,优于钛合金叶片;抗鸟撞能力得到了适航当局的认可。3.

40、3 碳纤维在航天领域的应用以碳纤维复合材料为代表的先进复合材料作为结构、功能或结构/功能一体化构件材料, 在导弹、运载火箭和卫星飞行器上发挥不可替代的作用,对碳纤维复合材料的开发研究 及应用规模影响武器装备跨越式提升和型号研制的成败,推动了整体航天技术的发展。火箭、导弹:碳纤维复合材料应用于导弹弹头、弹体箭体和发动机壳体的结构部件和卫星主体结构承 力件上,碳/碳和碳/酚醛是弹头端头和发动机喷管喉衬及耐烧蚀部件等重要防热材料,在 美国、日本、法国等各类导弹、发动机壳体以及火箭均已成熟应用。卫星、航天飞机及载人飞船:碳纤维高比强度和高比模量的特性可显著提高结构的自然频率与稳定性,避免发射过程 中产

41、生过大的动态响应荷载,进而保证卫星控制系统的正常运行。质轻,刚性,尺寸稳 定性和导热性好。同时,碳纤维复合材料在面对真空、高低温交变、紫外辐照、电子辐 照、原子氧等复杂条件太空环境是,具有优异的空间环境稳定性,防止材料发生翘曲、 膨胀或收缩等。目前广泛的应用在人造卫星结构体、太阳能电池板和天线中,在某些运 输系统的关键部件也采用碳纤维复合材料作为主要材料。从 1996 年 11 月 20 日的“神 州一号”升空开始到“神州六号”上天,我国在八年多的时间里六次飞天,并随着质量 和成本的下降,各类性能优异的碳纤维复合材料将会为航空航天技术做出更大贡献。4. 光伏高景气度推动碳碳复材碳纤维需求4.1

42、 平价上网进程加速,光伏产业增长速度进一步加快随着太阳能电池结构设计、微纳级激光精密加工等技术的进步,光伏发电的度电成本进 入下降通道,未来有望实现平价上网。根据 Bloomberg 预测,随着光伏技术的不断进步, 光伏发电成本正在迅速下降,光伏发电平价上网进程正在加速,它的实现具有里程碑意 义,将进一步加快光伏产业的发展速度。光伏发电在全球范围内很多国家已是清洁、低碳、并且拥有价格优势的能源形式。2021 年, 在光伏发电成本持续下降和全球绿色复苏等有利因素的推动下,全球光伏市场将快速增 长。在多国“碳中和”目标、清洁能源转型及绿色复苏的推动下,预计“十四五”期间, 全球每年新增光伏装机约

43、210-260GW。在国内光伏新增装机量方面:到 2030 年,中国非化石能源占一次能源消费比重将达到 25%左右。为达到此目标,在“十四五” 期间,我国光伏年均新增光伏装机或将在 70-90GW 之间。2019 年,受到政策迟于预期及标杆电价补贴改为竞价补贴模式,国内新增装机量较 2018 年下降明显。2020 年受疫情影响,上半年电站装机规模较少,全年装机主要集中在下半 年,尤其是 12 月,在抢装推动下,单月新增光伏装机规模达到 29.5GW,创历史新高。 2020 年全年国内光伏新增装机量达 48.20GW,同比上升 60.1%,为近三年新高,累计 光伏并网装机容量达 253GW,新增

44、和累计装机容量均为全球第一。从每年新增装机量来看,2018 年与 2019 年是特殊的两年,新增装机量比之前的几年出现 了下滑。主要原因是 2018 年国家发展改革委、财政部、国家能源局联合印发的关于 2018 年光伏发电有关事项的通知。文件颁布后,2018 年的装机新增量下降了 880 万千瓦,但 因光伏产品价格下降,带动了其他国家新增装机规模上升,使当年全球新增装机规模保 持了小幅增长。在新增装机总量中,占比较大的是集中式光伏装机。在我国光伏产业的制造端,2020 年中国多晶硅产量为 39.2 万吨,电池片产量为 134.8GW, 硅片产量为 161.3GW,组件产量为 124.6 万吨。

45、4.2 碳碳复材市场处于迅猛增长,热场部件需求旺盛C/C 复合材料是以碳纤维及其织物或碳毡增强的碳基体复合材料,具有低密度、高强度、 高导热性、低膨胀系数,以及抗热冲击性能好、尺寸稳定性高等优点,使其成为当今 1650C 以上应用的少数备选材料,最高理论温度高达 2600C,因此被认为是最有发展前途的高 温材料之一。目前我国光伏行业竞争激烈,成本压力显著,C/C 复合材料相比传统石墨材料具有更优异 的保温性能、更高的强度、更好的韧性,且不易破碎,可有效降低生产能耗、提升设备 使用寿命,从而降低整个生产的成本。C/C 复合材料的可设计性很强,可以根据产品结构需要编织出任意尺寸和形状的增强体, 其

46、在光伏行业的应用主要包括:多晶硅氢化炉用内、外保温筒、U 型加热器、保温板, 多晶硅铸锭炉用盖板、坩埚护板、坩埚底托、保温板,直拉硅单晶炉(简称单晶炉)用 坩埚、导流筒、发热体、盖板、底托、内外保温筒等。直拉硅单晶炉、多晶硅铸锭炉是生产光伏行业硅材料的主要设备,其核心部件均为高纯 石墨材料。随着光伏行业的发展,传统石墨材料很难满足直拉硅单晶炉和多晶铸锭炉生 产设备的大型化需要,而 C/C 复合材料具有良好的热物理性能,和石墨热场材料相比, C/C 复合材料比石墨高 3 倍以上,因此产品寿命非常长,在性价比方面比石墨材料有非常 大的优势。C/C 复合材料保温件、结构件和发热体将是直拉硅单晶炉和多

47、晶铸锭炉等光伏 设备热场材料的发展方向。2017 年到 2020 年,全球碳/碳复合材料产能增长迅速,到 2020 年已达到 5000 吨,其中, 中国的碳碳复合材料产能为 3000 吨,占比 60%。受“碳达峰、碳中和”政策刺激,单晶硅炉订单暴涨,单晶硅炉内,主要有碳毡功能材 料和坩埚、保温桶、护盘等碳碳复材结构材料:根据 2020 全球碳纤维复合材料市场报告的数据,保守估计,截至 2025 年,碳碳复材碳纤维需求将达到 1.86 万吨,2020-2025 间CAGR 为 30%。5. 行业龙头进入扩产期,设备产线进口替代加快,龙头公司受益明显5.1 国内扩产加速,碳纤维成本有望下降2020

48、 年中国碳纤维行业呈现的景气度较高。市场在强劲增长,叠加 8 月后日本限制碳纤维对华销售,因此几乎每家主要碳纤维公司均在扩大产能。2020 年国产碳纤维产能 3.62 万吨,产量 1.85 万吨,产能利用率约为 51%,国产碳纤维约 占总需求量的 37.87%,初步摆脱了依赖进口碳纤维及原丝等产品的被动局面。在“十四 五”开展前后,国内多家碳纤维生产商开启了与碳纤维及原材料等相关产品的生产扩能 项目,朝着实现“碳中和”、“碳达标”的愿景目标努力。根据部分项目建设投产期,预 计到 2025 年碳纤维新增产能满足 29.86 万吨。2020 年,我国碳纤维相关公司产能 36150 吨,销量是 18450 吨,销量/产能比为 51%。其 中以吉林碳谷和绍兴宝旌所生产的原丝和碳纤维

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 行业标准

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁