《《实际问题与一元二次方程》教案.doc》由会员分享,可在线阅读,更多相关《《实际问题与一元二次方程》教案.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、22.3实际问题与一元二次方程(一)一、教学目标1.会利用一元二次方程解决传播问题.2.培养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决传播问题.2.难点:根据传播问题列方程.三、教学过程(一)基本训练,巩固旧知1.填空: (1)有一人得了流感,他把流感传染给了10个人,共有 人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有 人得流感. (2)有一人得了流感,他把流感传染给了x个人,共有 人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有 人得流感. ((1)题答案为11,12
2、1,(2)题答案为1+x,1+x+x(x+1),先让生自己做,然后师进行讲解)(二)创设情境,导入新课师:和一元一次方程一样,利用一元二次方程可以解决实际问题,上节课我们做了一个例题,本节课我们再来看一个例题.(三)尝试指导,讲授新课 (师出示下面的例题)例 有一人得了流感,经过两轮传染后,共有121人得了流感,每轮传染中平均每一个人传染了几个人?师:大家把这个题目好好默读几遍.(生默读)师:谁能不看黑板说出题目的意思?生:(让几名同学说)师:这个题目怎么设?生:设每轮传染中平均一个人传染了x个人.(师板书:解:设每轮传染中平均一个人传染了x个人)师:(在黑板的其它地方板书:第一轮后)设平均一
3、个人传染了x个人,那么第一轮后,共有多少人得了流感?生:1+x.(多让几名同学回答,然后师板书:1+x)师:(在黑板的其它地方板书:第二轮后)那么第二轮后,共有多少人得了流感?(让生思考一会儿再叫学生)生:1+x+x(1+x).(多让几名同学回答,然后师板书:1+x+x(1+x))师:下面大家根据题目的意思列一列方程. (生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:1+x+x(1+x)=121(生答师板书:1+x+x(1+x)=121).师:(指方程)这是一个一元二次方程,怎么解这个方程?大家试着解一解.(生解方程)师:解出来的结果是什么?生:x1=10,x2=-1
4、2(生答师板书:x1=10,x2=-12).师:(指方程)解这个方程是有讲究的,很多同学用公式法解,发现数字比较大,解起来比较麻烦.实际上我们可以用直接开平方法来解.怎么用直接平方法来解?(稍停)师:(指准1+x+x(1+x)=121)1+x+x(1+x)有公因式1+x,我们把1+x提取出来,得到(1+x)(1+x)(边讲边在其它地方板书:(1+x)(1+x)),可见方程可以化成(1+x)2=121(边讲边在其它地方板书:(1+x)2=121),用直接开平方法解这个方程,容易求出x1=10,x2=-12.师:方程中的x表示每个人传染的人数,所以x2=-12不符合题目的意思,要舍去(板书:(不合
5、题意,舍去).师:最后还要答.(板书:答:每轮传染中平均每个人传染了10个人)师:下面请大家自己来做一个练习.(三)试探练习,回授调节2.完成下面的解题过程: 有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人? 解:设每轮传播中平均一个人传播了x个人. 根据题意列方程,得 . 提公因式,得( )2= . 解方程,得 x1= ,x2= (不合题意,舍去). 答:每轮传播中平均一个人传播了 个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空: (1)经过一轮传播后,共有 人知道这个消息; (2)经过两轮传播后,共有 人知道这个消息; (3
6、)经过三轮传播后,共有 人知道这个消息; (4)请猜想,经过十轮传播后,共有 人知道这个消息.(五)归纳小结,布置作业师:本节课我们学习了利用一元二次方程解决传播问题.俗话说:一传十,十传百.这一传十,十传百是怎么么传的?(指准方程)用方程来表示就是(1+x)2=121.如果传了三轮,就成了(1+x)3;如果传了十轮,就成了(1+x)10.(作业:P48习题1(3)(4)4,4题中91改为81)四、板书设计(略) 22.3实际问题与一元二次方程(二)一、教学目标1.会利用一元二次方程解决增长问题.2.培养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决增长
7、问题.2.难点:根据增长问题列方程.三、教学过程(一)基本训练,巩固旧知1.填空: (1)扎西家2006年收入是2万元,以后每年增长10,则扎西家2007年的收入是 万元,2008年的收入是 万元; (2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是 万元,2008年的收入是 万元. ((1)题答案为2.2,2.42,(2)题答案为2(1+x),2(x+1)2,先让生自己做,然后师进行讲解,并写出过程)(二)创设情境,导入新课师:上节课我们学习了利用一元二次方程解决传播问题.什么是传播问题?就是像“一传十,十传百”这样的问题.与传播问题类似的还有一种问题,叫什
8、么问题?叫增长问题.师:下面我们就来看一个增长问题.(三)尝试指导,讲授新课 (师出示下面的例题)例 扎西家2006年收入是2万元,2008年的收入是2.6万元,求扎西家收入的年平均增长率.师:大家把这个题目好好看几遍.(生默读)师:谁能不看黑板说出题目的意思?生:(让几名同学说)师:这个题目怎么设?生:设扎西家收入的年平均增长率为x.(师板书:解:设扎西家收入的年平均增长率为x)师:(指准板书)扎西家2006年收入是2万元(板书:2006年 2万元),年平均增长率为x,那么,2007年扎西家的收入是多少万元?(板书:2007年)生:2(1+x).(生答师板书:2(1+x)万元)师:(指准板书
9、)2007年收入是2(1+x)万元,年平均增长率x,那么,2008年扎西家的收入是多少万元?(板书:2008年)生:2(1+x)2.(生答师板书:2(1+x)2万元)师:知道了扎西家2008年的收入可以表示成2(1+x)2,下面大家根据题目的意思列一列方程. (生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:2(1+x)22.6(生答师书:2(1+x)22.6).师:接下来解方程(板书:解方程,得)用什么方法解这个方程比较简单?(稍停)用直接开平方法. (以下师在其它地方板书解方程过程)师:得到x10.14,x2-2.14(生答师板书:x10.14,x2-2.14).师
10、:扎西家的收入是增加的,所以增长率应该是正数,x2-2.14不符合题目的意思,要舍去(板书:(不合题意,舍去).师:扎西家收入的年平均增长率约为0.14,也就是14(板书:答:扎西家收入的年平均增长率约为14).师:下面请大家自己来做一个练习.(三)试探练习,回授调节2.完成下面的解题过程: 某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少? 解:设该公司利润的年平均增长率是x. 根据题意列方程,得 . 解方程,得 x1 ,x2 (不合题意,舍去). 答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,
11、填空: (1)明年该公司年利润要达到 万元; (2)后年该公司年利润要达到 万元; (3)第三年该公司年利润要达到 万元; (4)第十年该公司年利润要达到 万元.(五)归纳小结,布置作业师:本节课我们学习了利用一元二次方程解决增长问题,增长问题在现在生活中很常见,它与传播问题类似,希望大家掌握解决这两个问题的方法.(作业:P48习题1(5)(6)7)22.3实际问题与一元二次方程(三)一、教学目标1、掌握面积法建立一元二次方程的数学模型并运用它解决实际问题 2、利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题二、教材分析本课时的教材在一元二次方程实际运用的第三课时,通过由根
12、据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题,并通过配方法或公式法或分解因式法解决实际问题。本节是在之前已经充分讨论了解一元二次方程的几种方法,并且已有由实际问题列出一元二次方程的内容的基础上,进一步以“探究”的形式更深入地讨论如何用一元二次方程解决实际问题。本节要探究的实际问题,比前面出现的实际问题,在分析数量方面更加复杂些,问题情景也跟实际情况更接近。这为以后,学生在实际生活中的应用打好坚实的基础。三、重点难点重点: 根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型四、教学方法引导学习法
13、五、教具准备多媒体课件六、教学过程【引入】1直角三角形的面积公式是什么?一般三角形的面积公式是什么呢? 2正方形的面积公式是什么呢?长方形的面积公式又是什么? 3梯形的面积公式是什么? 4菱形的面积公式是什么? 5平行四边形的面积公式是什么? 6圆的面积公式是什么?【探索新知】学生活动1:如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)? 分析:依据题意知:中央矩形的长宽之比等于封面的长宽之比9:7,由此可以判定:上下边
14、衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm 因为四周的彩色边衬所点面积是封面面积的,则中央矩形的面积是封面面积的 所以(27-18x)(21-14x)=2721 整理,得:16x2-48x+9=0 解方程,得:x=, x12.8cm,x20.2 所以:9x1=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm 因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为1.4cm 学生活动2:某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠
15、深多2m,渠底比渠深多0.4m (1)渠道的上口宽与渠底宽各是多少? (2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完? 分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模 解:(1)设渠深为xm, 则渠底为(x+0.4)m,上口宽为(x+2)m 依题意,得:(x+2+x+0.4)x=1.6 整理,得:5x2+6x-8=0 解得:x1=0.8m,x2=-2(舍) 上口宽为2.8m,渠底为1.2m (2)=25天 答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道 【巩固练习】 1在一块长12m
16、,宽8m的长方形平地中央,划出地方砌一个面积为8m2的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?2有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到01尺)【应用拓展】 谁能量出道路的宽度: 如图22-10,有矩形地ABCD一块,要在中央修一矩形花辅EFGH,使其面积为这块地面积的一半,且花圃四周道路的宽相等,今无测量工具,只有无刻度的足够长的绳子一条,如何量出道路的宽度? 请同学们利用自己掌握的数学知识来解决这个实际问题,相信你一定能行【归纳小结】 利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题【作业】 习题22.3第6,8题