初二数学公开课教案.pdf

上传人:赵** 文档编号:52452362 上传时间:2022-10-23 格式:PDF 页数:12 大小:518.32KB
返回 下载 相关 举报
初二数学公开课教案.pdf_第1页
第1页 / 共12页
初二数学公开课教案.pdf_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《初二数学公开课教案.pdf》由会员分享,可在线阅读,更多相关《初二数学公开课教案.pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初二数学公开课教案初二数学公开课教案初二数学公开课教案初二数学公开课教案 1 1一、教学目标1.了解二次根式的意义;2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3.掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5.通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式.对

2、于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件 a0 时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2)是二次根式,而,提问学生:2 是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例 1 当 a 为实数时,下列各式中哪些是二次根式?例 2x 是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在 x 是什么数时,x-3 是非负数,式子有意义.例 3 当字母取何值时,下列各式

3、为二次根式:(1)(2)(3)(4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)a、b 为任意实数时,都有 a2+b20,当 a、b 为任意实数时,是二次根式.(2)-3x0,x0,即 x0 时,是二次根式.(3),且 x0,x0,当 x0 时,是二次根式.(4),即,故 x-20 且 x-20,x2.当 x2 时,是二次根式.例 4 下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件 a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都

4、大于等于零.解:(1)由 2a+30,得.(2)由,得 3a-10,解得.(3)由于 x 取任何实数时都有|x|0,因此,|x|+0.10,于是,式子是二次根式.所以所求字母 x 的取值范围是全体实数.(4)由-b20 得 b20,只有当 b=0 时,才有 b2=0,因此,字母 b 所满足的条件是:b=0.初二数学公开课教案初二数学公开课教案 2 2教学目标1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程.提出问题,创设情境在前面的学习中,我们

5、认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形等腰三角形.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线 L,在 L 上取点 A,在 L 外取点 B,作出

6、点 B 关于直线 L 的对称点 C,连结 AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合

7、对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性

8、质.同学们现在就动手来写出这些证明过程).如右图,在 ABC 中,AB=AC,作底边 BC 的中线 AD,因为所以 BAD CAD(SSS).所以 B=C.如右图,在 ABC 中,AB=AC,作顶角 BAC 的角平分线 AD,因为所以 BAD CAD.所以 BD=CD,BDA=CDA=BDC=90.例 1如图,在 ABC 中,AB=AC,点 D 在 AC 上,且 BD=BC=AD,求:ABC 各角的度数.分析:根据等边对等角的性质,我们可以得到 A=ABD,ABC=C=BDC,再由 BDC=A+ABD,就可得到 ABC=C=BDC=2 A.再由三角形内角和为 180,就可求出 ABC 的三个内

9、角.把 A 设为 x 的话,那么 ABC、C 都可以用 x 来表示,这样过程就更简捷.解:因为 AB=AC,BD=BC=AD,所以 ABC=C=BDC.A=ABD(等边对等角).设 A=x,则 BDC=A+ABD=2x,从而 ABC=C=BDC=2x.于是在 ABC 中,有 A+ABC+C=x+2x+2x=180,解得 x=36.在 ABC 中,A=35,ABC=C=72.师下面我们通过练习来巩固这节课所学的知识.随堂练习:1.课本 P51 练习 1、2、3.2.阅读课本 P49P51,然后小结.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的

10、两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.作业:课本 P56 习题 12.3 第 1、2、3、4 题.板书设计12.3.1.1 等腰三角形一、设计方案作出一个等腰三角形二、等腰三角形性质:1.等边对等角 2.三线合一初二数学公开课教案初二数学公开课教案 3 3教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三

11、角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I 提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B 点)为 B 标,然后在这棵树的正南方(南岸 A 点抽一小旗作标志)沿南偏东 60方向走一段距离到 C 处时,测得 ACB 为 30,这时,地质专家测得 AC 的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II 引入新课1.由性质定理的题设和结论的变化,引出研究的内容在 ABC 中,苦 B=C,则 AB=AC 吗?作一个两个角相等的三角形,然后观察两等

12、角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III 例题与练习1.如图 2其中 ABC 是等腰三角形的是 2.如图 3,已知 ABC 中,AB=AC.A=36,则 C_(根据什么?).如图 4,已知 ABC 中,A=36,C=72,ABC 是_三角形(根据什么?).若已知 A=36,C=72,BD 平分 ABC 交 AC 于 D,判断图 5 中等

13、腰三角形有_.若已知 AD=4cm,则 BC_cm.3.以问题形式引出推论 l_.4.以问题形式引出推论 2_.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图 6,在 ABC 中,AB=AC,ABC、ACB 的平分线相交于点 F,过 F 作 DE/BC,交 AB 于点 D,交 AC 于 E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件 AB=AC,其他条件不变,图 6 中还有等腰三角形吗?练习:P53 练习 1、2、3。IV 课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?V 布置作业:P56 页习题 12.3 第 5、6 题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁