《小学六年级数学下册全册资料讲解.doc》由会员分享,可在线阅读,更多相关《小学六年级数学下册全册资料讲解.doc(153页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Good is good, but better carries it.精益求精,善益求善。小学六年级数学下册全册-北师大版小学六年级数学下册精品教案全册教学设计教材简析六年级第二学期是小学阶段最后一个学期,第一单元是“圆柱和圆锥”的知识,学生将在这个单元学习中,经历由“面”到“体”的学习过程,第二单元是“正比例和反比例”的知识,在第三单元有重点地系统复习小学阶段教学的主要知识,在深化理解的同时组织更合理的认知结构,通过适当的练习形成必要的技能,应用知识解决实际问题,培养数学素养。教学目标:1、让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆
2、柱表面积的计算方法。2、让学生在具体情境中理解比例的意义和性质,认识成正比例和成反比例的量,体会不同领域数学内容的联系,加深对相关数量关系的理解。3、让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问题中数量关系、空间形式和数据信息的理解,提高综合应用数学知识和方法飞能力。4.进一步感受数学思考的确定性和数学结论的严谨性,获得一些成功的体验,锻炼克服困难的意志。进一步培养认真细心的学习习惯,培养发现错误及时订正的良好习惯。5、进一步感受自己在数学知识和方法等方面的收获与进步,发展对数学的积极情感,进一步增强学好
3、数学的信心。教学重点:圆柱的侧面积和表面积的计算方法、圆柱和圆锥的体积计算方法、比例的意义和基本性质、正比例和反比例、扇形统计图、转化的解题策略以及总复习的四个板块的系列内容。教学难点:圆柱和圆锥体积计算方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、解题策略的灵活运用。教学设计目录第一单元圆柱与圆锥4教学内容:面的旋转4教学内容:圆柱的表面积6圆柱的表面积练习课17圆柱的表面积练习课28圆柱的表面积练习课39教学内容:圆柱的体积9圆柱的体积练习课111圆柱的体积练习课212圆锥的体积第1课时13圆锥的体积第2课时15圆锥的体积练习课116第二单元正比例和反比例17教学内容:变化的
4、量18教学内容:正比例19教学内容:画一画21教学内容:反比例23教学内容:观察与探究24图形的放缩第1课时25图形的放缩第2课时25比例尺第1课时26比例尺第2课时27第二单元整理与复习27总复习29三、数的认识30整数(第1课时)30整数(第2课时)31小数、分数、百分数和比(第1课时)31小数、分数、百分数和比(第2课时)32常见的量33探索规律34四、数的运算35运算的意义35第1课时35第2课时35估算(第1课时)36估算(第2课时)37计算与应用(第1课时)38计算与应用(第2课时)39运算律40五、代数初步41用字母表示数41方程42正比例、反比例(第1课时)43正比例、反比例(
5、第2课时)44六、空间与图形44图形的认识45线与角45平面图形(第1课时)46平面图形(第2课时)47立体图形(第1课时)48立体图形(第2课时)48图形与测量(第1课时)长度、面积和体积的认识49图形与测量(第2课时)度量单位的认识及进率50图形与测量(第3课时)平面图形的周长与面积51图形与测量(第4课时)立体图形的表面积与体积52图形与变换(第1课时)53图形与变换(第2课时)53图形与变换(第3课时)54图形与位置(第1课时)55图形与位置(第2课时)55七、统计与概率56统计(第1课时)56统计(第2课时)57统计(第3课时)58可能性(第1课时)59可能性(第2课时)60解决问题
6、的策略(第1课时)61问题解决的策略(第2课时)62第一单元圆柱与圆锥单元教学内容:面的旋转、圆柱的表面积、圆柱的体积、圆锥的体积单元教学目标:1、结合具体情境和操作活动,引导学生整体把握“点、线、面、体”之间的联系。2、从多种角度探索圆柱和圆锥的特征。3、探索圆柱表面积的计算方法,发展空间观念。4、经历圆柱和圆锥体积计算方法的探索过程,体会“类比”的思想。5、在解决实际问题中用活所学知识,感受数学与生活的联系。课时安排:12课时教学内容:面的旋转教学目标:1、通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。2、通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。
7、3、通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。教学重点:1、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。2、通过观察,初步了解圆柱和圆锥的组成及其特点。教学难点:通过观察,初步了解圆柱和圆锥的组成及其特点。教学用具:各种面、圆柱和圆锥模型教学过程:一、活动一如图:将自行车后轮架支起,在后车车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验:点动成线二、活动二观察下面各图,你发现了什么?学生发现:风筝的每一个节连起来看,形成了
8、一个长方形;雨刷器扫过后形成一个半圆形学生体验:线动成面三、活动三如图:用纸片和小棒做成下面的小旗,快速的旋状小棒,观察并想象旋转后形成的图形,再连一连。1、学生实际动手操作,然后根据想象的图形连线11(圆柱)23(球)34(圆锥)42(圆台)2、介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。指名请学生说。小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。找一找请你找一找我们学过的立体图形说一说圆柱与圆锥有什么特点?和小组的同学互相说一说圆柱:有两个面是大小相同的
9、圆,有另一个面是曲面。圆锥:它是由一个圆和一个曲面组成的。认一认圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱有一个曲面,叫做侧面。圆柱两个底面之间的距离叫做高。圆锥的底面是一个圆。圆锥的侧面是一个曲面。从圆锥顶点到底面圆心的距离是圆锥的高。(教师画出平面图进行讲解。并在图上标出各部分的名称。)练一练找一找,下图中哪些部分的形状是圆柱或者圆锥?再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥的。1、下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。2、想一想,连一连3、应用题教学内容:圆柱的表面积教学目标:1、能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中
10、一些简单的问题,使学生感受到数学与生活的密切联系2、通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。3、结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确3、计算圆柱的侧面积和表面积。教学重点:使学生认识圆柱侧面展开图的多样性。教学难点:生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。教学用具:课件、圆柱体的瓶子、剪子教学过程:一、创设情境,引起兴趣。拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)
11、那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)二、自主探究,发现问题。研究圆柱侧面积1、独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。2、观察对比:观察展开的图形各部分与圆柱体有什么关系?3、小组交流:能用已有的知识计算它的面积吗?4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)长方形的面积圆柱的侧面积即长宽底面周长高,所以,圆柱的侧面积底面周长高S侧=Ch如果已知底面半径为r,圆
12、柱的侧面积公式也可以写成:S侧=2rh如果圆柱展开是平行四边形,是否也适用呢?学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)研究圆柱表面积1、现在请大家试着求出这个圆柱体茶叶罐用料多少。学生测量,计算表面积。2、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积圆柱的侧面积底面积23、动画:圆柱体表面展开过程三、实际应用1、解决书上的例题2、填空圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()3、要求一个圆柱的表面积,
13、一般需要知道哪些条件()4、教材第六页试一试。四、板书圆柱体的表面积圆柱的侧面积底面周长高S侧ch长方形面积长宽圆柱的表面积圆柱的侧面积底面积2圆柱的表面积练习课1教学目标:1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学重点:掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学难点:圆柱表面积的实际应用。教学过程:一、基本练习说说计算方法二、实际应用求压路的面积是求什么?说自己的想法,独立解答。三、实践活动圆柱的表面积练习课2教学目标:1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能
14、运用到实际中解决问题。教学重点:掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学难点:圆柱表面积的实际应用。教学过程:一、实际应用1、2、3、圆柱的表面积练习课3教学内容:北师大版数学六年级下册67页。教学目标:1、进一步理解圆柱表面积的含义及其计算方法。2、能够运用圆柱表面积的计算方法解决简单的实际的问题。3、进一步发展学生的空间观念。教学重点;目标1、2。教学难点:目标2。教学过程:活动一:复习,巩固圆柱表面积的计算方法。1、圆柱的表面积和侧面积有什么关系?2、侧面积怎样计算?3、表面积怎样计算?4、一个圆柱,底面周长94。2厘米,高25厘米,求它的侧面积和表面积。5、一个
15、圆柱,半径3。2分米,高5分米。求表面积。活动二;提高解决问题的能力。1、如图,压路机前轮转动一周,压路的面积是多少平方米?请看着书上的图,说说压路机前面的圆柱,底面在哪?高在哪?求压路的面积就是求什么?2、一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1。2米,镶瓷砖的面积是多少平方米?师:是指侧面积和一个底面积。3、制作一个底面直径20厘米,长50厘米的圆柱形通风管,至少要用多少平方厘米铁皮?通风管有什么特征?计算通风管需要多少铁皮,就是求圆柱的的什么?4、油桐的表面要刷上防锈油漆,每平方米需用防锈油漆0。2千克,漆一个油桐大约需要多少防锈油漆?(结果保留两位油漆)求需
16、要多少油漆就是求圆柱形油桐的什么?注意:这种解决实际问题的内容,一般都采用进一法进行保留。5、薯片盒规格如图,每平方米纸最多能做多少个薯片盒的侧面包装?要解决这个问题,必须先求什么?(先求侧面积)再求什么?(再求1平方米里面包含了几个侧面积)教学内容:圆柱的体积教学目标:1、通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。2、通过圆柱体体积公式的推导,培养学生的分析推理能力。3、理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。教学重点:圆柱体体积的计算教学难点:圆柱体体积公式的推导教学用具:圆柱体学具、课件教学过程:一、复习引新
17、1求下面各圆的面积(回答)。(1)r=1厘米;(2)d=4分米;(3)C=6.28米。要求说出解题思路。2想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。3提问:什么叫体积?常用的体积单位有哪些?4已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积高)二、探索新知1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)2、怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起
18、来讨论。3、公式推导。(有条件的可分小组进行)(1)请同学指出圆柱体的底面积和高。(2)回顾圆面积公式的推导。(切拼转化)(3)探索求圆柱体积的公式。根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。(4)讨论并
19、得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积高(板书:圆柱的体积=底面积高)用字母表示:(板书:V=Sh)(5)小结。圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?4教学算一算审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)教学“试一试”小结:求圆柱的体积,必须知道底面积和高
20、。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。三、巩固练习:练习册练习四、课堂小结:这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。圆柱的体积练习课1教学目标:1进一步理解和掌握圆柱的体积计算公式,并能应用到实际解决问题中。2培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教学重点:理解和掌握圆柱的体积计算公式。教学难点:圆柱体积计算公式的推导。教学过程:一、基本
21、练习二、实际应用说解题思路说说你的解题思路这道题的注意的地方:单位的统一说说哪个体积大?为什么?上升的2厘米是什么分别说说表面积和体积的计算方法。三、实践活动圆柱的体积练习课2教学内容:北师大版六年级数学下册910页。教学目标:1、进一步理解圆柱体积公式的由来。2、能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。教学重、难点:目标2。教学过程:活动一:复习圆柱体积的计算公式。1、长、正方体的体积都可以用什么公式进行计算?2、圆柱的体积该怎样计算?活动二:解决简单的实际问题。1、看图计算下面各圆柱的体积。2、一个底面直径是14厘米,高是20厘米的杯子。能装下3000毫升的牛奶多少杯?
22、要求能装多少杯牛奶,必须先求什么?3、一个装满稻谷的圆柱形粮屯,底面面积为2平方米,高为80厘米。每立方米稻谷约重600千克,这个粮屯存放的稻谷约重多少千克?通过读题,你发现了什么?(要换算单位)要求这个粮屯能存放多少稻谷,必须先求什么?(先求体积)4、一个正方体的棱长4分米,一个圆柱的底面直径2分米,高4分米。这两个立体图哪个面积大?为什么?师:高相等,可以比较底面积的大小。5、一个圆柱形容器的底面直径是10厘米,把一块铁块放入这个容器中,水面上升2厘米,这块铁块的体积是多少?这个铁块的体积和什么有关系?求铁块的体积就是求什么?6、一根圆柱形木料底面周长是12。56分米,高是4米。1)它的表
23、面积是多少平方米?2)它的体积是多少立方米?3如果把它截成三段小圆柱,表面积增加多少平方分米?7、一个圆柱形水桶的体积是24立方分米,底面积是7。5平方分米,装了3/4桶水。水面高多少分米?要求水面的高,必须先求什么?三、课堂小结圆锥的体积第1课时教学内容:义务教育新课程标准实验教科书数学六年级下册第11页学习目标1、知识与技能:能正确地计算圆锥的体积并能解决生活中一些简单的实际问题。2、过程与方法:了解圆锥体积的含义,经历“类比猜想验证说明”的探索圆锥体积计算方法的过程。3、情感、态度与价值观学会合理猜想,提高学生的数学应用意识,在活动中培养学生的合作精神。教学过程:(一)创设情境,揭示课题
24、(约3分钟)教师活动:课件出示教学情境(如右图)并提出问题:你能获得哪些数学信息?生1:小麦堆是圆锥形的。生2:笑笑想知道这堆小麦的体积是多少。师:那我们怎样才能帮助笑笑解决这个问题呢?生:计算这堆小麦的体积,实际上是要计算这个圆锥的体积。【设计意图:创新是人类社会发展的不竭动力,是一个民族的灵魂。问题意识与创新息息相关,提出问题比解决问题更加重要,培养学生提出数学问题的意识和能力也是实施数学新课标的重要组成部分。因此该环节安排了学生观察情景图,提出“圆锥的体积如何计算”这一问题,揭示本课课题。】师:圆锥的体积应该如何计算,谁能大胆猜想一下?学生独立思考。【设计意图:该环节中,教师鼓励学生大胆
25、猜想,是因为在小学数学教学中,猜想能发挥其独特的作用。它能缩短学生解决问题的时间,能使学生获得数学发现的机会,能锻炼学生的数学思维。有猜想,就有创新的萌芽;没有猜想,就不可能有伟大的发明和创造。】(二)类比迁移,合理猜想(约6分钟)师:大家可以结合我们学过的立体图形体积的计算方法来思考。【设计意图:教师的建议实则是在教给学生数学学习的经验和方法,同时渗透“类比”等数学思想。】生猜想:圆锥的体积是与它等底等高的圆柱体积的二分之一。师:对于以上的说法,谁有补充?或者有不同的见解?并请你谈谈你的猜想依据是什么。(教师提供一套等底等高的圆锥、圆柱教具供学生观察)学生观察后又猜想到:圆锥的体积可能是圆柱
26、体积的三分之一。【设计意图:通过猜想,激发学生探索、验证的兴趣。当然,猜想的结果有合理与不合理的分别。所以教师在课堂上对学生的猜想进行了必要的引导:提供实物供学生观察,并提醒学生猜想要有依据。这样做的目的在于渗透学习要有科学、严谨的态度。只有这样,才能对培养学生创造性思维起到积极的帮助作用。】师:圆锥的体积到底是与它等底等高的圆柱体积的几分之几呢?谁有好的方法证明呢?学生活动:小组讨论解决问题的方法。(三)验证说明,总结归纳(约14分钟)师:谁愿意来说一说自己的方法?学生活动:依次说出验证的方法,例如:用圆锥容器向圆柱容器内倒沙或水等。然后小组合作、操作验证。【设计意图:动手操作是自主探究性学
27、习中经常采用的重要方法,操作时,要为学生提供必要的探索、猜测和发现的载体,使每个学生都参与到探求和运用新知识的活动中去,最终达到学会知识、理解知识、运用知识的目的。猜想验证,创造了“人人参与、人人体验、人人成功”的氛围。】师:通过我们的合理猜想和一系列的验证,你发现了什么?各小组汇报:圆锥的体积约是与它等底等高的圆柱体积的三分之一。根据课堂情况,教师演示flash课件:用圆锥容器向圆柱容器内倒水:圆锥容器盛满水,倒入与它等底等高的圆柱形容器中,一共倒了三次。师:看过刚才的课件演示后,你发现了什么?生:我发现了刚才小组实验的过程中存在有误差,通过老师播放课件演示后,我知道了圆锥的圆锥的体积确实是
28、与它等底等高的圆柱体积的三分之一。【设计意图】:在学生动手实验已经得出结论的基础上,教师利用多媒体课件重演,能使学生更加直观、形象地观察,同时体会到刚才动手验证的过程中存在着一些误差,从而深刻地感受到数学的严谨性。】师:谁愿意试着总结归纳出圆锥体积的计算公式?生总结:V=Sh。并解决课堂之初的“小麦体积”问题。【设计意图:用刚学过的知识解决课前提出的问题,学生体会到成功的喜悦。】(四)巩固练习,解决问题(约12分钟)师:大家说得真好,但做得怎样呢?下面就以四人小组为单位,借助我们面前的电脑,做个闯关游戏。请认真听老师的友情提示:要想参与闯关游戏,必须先过基础关,过了基础关,四组非常有挑战性的题
29、目就会出现在你们的眼前,不用按照题目的顺序,各小组可以根据情况自由选择,比一比,谁是闯关小能手!同时还要比一比,哪一小组合作的最好!学生活动:通过电脑操作,任意选择题目,采用合作学习、组长评价的形式解决问题,巩固新知。附练习题目:(一)基础关:(每位同学必答题目)求下面各圆锥的体积:【设计意图:学生是发展的人,但发展过程中又存在着差异,设计“基础关”的题目,实则尊重全体学生,尊重智力发育迟缓的学生,保护全体孩子学习数学的热情和自信心,简单来说,这是一组保底的题目。】(二)闯关题目:(根据喜好随意选择)1、“有陷阱,你敢来吗?”(1)圆锥的体积等于圆柱体积的1/3。()(2)一个圆锥的底面积是1
30、2平方米,高是5米,它的体积是60立方米。()(3)把一个圆柱削成一个与它等底等高的圆锥,削去的体积是圆锥的2倍。()2、“圆锥体积变变变”一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米。(1)如果把它捏成底面大小一样的圆锥,圆锥的高是多少?(2)如果把它捏成高是10厘米的圆锥,求圆锥的底面积。3、“水究竟有多深?”如下图,将甲容器注满水,再将水倒入乙容器,此时乙容器中的水有多高?(单位:厘米)4、“粮食大丰收”一个粮仓,如右图,如果每立方米粮食的质量为500千克,这个粮仓最多能容纳多少千克粮食?【设计意图:闯关题目中,学生随意选择来做,并按照选择题目、认真答题、查看答案的程序进行自我评价
31、。这样的答题形式,使每个孩子都能得到不同程度的提高,改变了以往课堂“齐做题,齐纠正”的状况。】(五)练习交流(约4分钟)师:在刚才答题过程中,你遇到了什么样的困难解决不了?请提出来。或者你想发表一下你的合作感言也可以,大家畅所欲言吧。【设计意图:借助学生自己的智慧,解决合作过程中某些解决不了的问题。】(六)课堂小结(1分钟)师:和你的伙伴交流一下你本节课的收获!圆锥的体积第2课时教学目标:1、使学生理解求圆锥体积的计算公式2、会运用公式计算圆锥的体积3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教学重点:圆锥体体积计算公式的推导过程教学难点:正确理解圆锥体积计算公式教学过
32、程:一、铺垫孕伏1、提问:(1)圆柱的体积公式是什么?(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题(板书:圆锥的体积)二、探究新知(一)指导探究圆锥体积的计算公式1、教师谈话:下面我们利用实验的方法来探究圆锥体积的计算方法老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了
33、什么?2、学生分组实验学生汇报实验结果圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满3、全班交流4、引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的板书:5、推导圆锥的体积公式:用字母表示圆锥的体积公式板书:6、思考:要求圆锥的体积,必须知道哪两个条件?7、反馈练习:圆锥的底面积是5,高是3,体积是();圆锥的底面
34、积是10,高是9,体积是()(二)算一算学生独立计算,集体订正说说解题方法三、全课小结:通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)四、课后反思圆锥的体积练习课1教学目标:1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。3、进一步熟悉圆锥的体积计算教学难点:圆锥的体积计算教学重点:圆锥的体积计算教学过程:一、基本练习圆锥体积计算公式相邻两个面积单位之间的进率是多少?相邻两个体积单位之间的进率是多少?二、实际应用占地面积是求得什么?三、实践活动第二单元正比例和
35、反比例单元教学内容:变化的量、正比例、画一画、反比例、观察与探究、图形的缩放、比例尺单元教学目标:结合具体情境,体会生活中存在着大量互相依赖的变量;在具体情境中,尝试用自己的语言描述两个变量之间的关系。结合丰富的实例,认识正比例或者反比例;能根据正比例和反比例的意义,判断两个相关联的量是不是成正比例或反比例能找出生活中成正比例和反比例的实例,会利用正、反比例的有关指示解决一些简单的生活问题。通过观察、操作与交流,体会比例持产生的必要性和实际意义,了解比例尺的含义。运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。课时安排:15课时教学内容:变化的量教学目标:
36、1结合具体目标,体会生活中存在着大量互相依存的变量。2在具体情境中,尝试用自己的语言描述两个变量之间的关系。教学重点:结合具体目标,体会生活中存在着大量互相依存的变量。教学难点:在具体情境中,尝试用自己的语言描述两个变量之间的关系。教学用具:课件教学过程:活动一:观察并回答。下表是小明的体重变化情况。观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。2、上表中哪些量在发生变化?3、说一说小明10周岁前的体重是如何随年龄增长而变化的?小结:小明的体重随年龄的增长而变化。26岁和6-10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。4、体重一直会随年龄的增长而变化吗?这
37、说明了什么?说明:体重和年龄是一组相关联的量。但体重的增长是随着人的生长规律而确定的。教育学生要合理饮食,适当控制自己的体重。活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。观察书上统计图:图中所反映的两个变化的量是哪两个?横轴表示什么?纵轴表示什么?同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。一天中,骆驼的体温最高是多少?最低是多少?一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?第二天8时骆驼的体温与前一天8时的体温有什么关系?骆驼的体温有什么变化变化的规律吗?活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近
38、似关系。1、蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。2、如果用t表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。3、你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明4、你还发现我们学过的数学知识中有哪些量之间具有变化的关系?全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。全课小结教学内容:正比例教学目标:1利用正比例解决一些简单的生活问题,感受
39、正比例关系在生活中的广泛应用。2能根据正比例的意义,判断两个相关联的量是不是成正比例。3结合丰富的事例,认识正比例。教学重点:1、结合丰富的事例,认识正比例。2、能根据正比例的意义,判断两个相关联的量是不是成正比例。教学难点:能根据正比例的意义,判断两个相关联的量是不是成正比例。教学用具:课件教学过程:活动一:在情境中感受两种相关联的量之间的变化规律。(一)情境一:1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么
40、?3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。说说你发现的规律。(二)情境二:1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。(三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。4、说说以上两个例子有什么共同的特点。小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同
41、;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。5、正比例关系:(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。(2)购买苹果应付的钱数与质量有什么关系?6、观察思考成正比例的量有什么特征?一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。(四)想一想:1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?师小结:(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。请你也试着说一说。(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一
42、个变化的值,所以正方形的面积和边长不成正比例。请生用自己的语言说一说。2、小明和爸爸的年龄变化情况如下:小明的年龄/岁67891011爸爸的年龄/岁3233(1)把表填写完整。(2)父子的年龄成正比例吗?为什么?(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。与同桌交流,再集体汇报在老师的小结中感受并总结正比例关系的特征活动二:练一练。1、判断下面各题中的两个量,是否成正比例,并说明理由。(1)每袋大米的质量一定,大米的总质量和袋数。(2)一个人的身高和年龄。(3)宽不变,长方形的周
43、长与长。2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由应付的钱数随购买的枚数的变化而变化,而且比值不便。所以应付的钱数与买邮票的枚数成正比例。4、找一找生活中成正比例的例子。5、先自己独立完成,然后集体订正,说理由。教学内容:画一画教学目标:1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。2、会在方格纸上描出成正比例的量所对应的点,
44、并能在图中根据一个变量的值估计它所对应的变量的值。3、利用正比例关系,解决生活中的一些简单问题。教学重点:1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。教学难点:1、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。2、利用正比例关系,解决生活中的一些简单问题。教学过程:一、复习活动一;判断下面的量是否成正比例关系?1、每行人数一定,总人数和行数。2、长方形的长一定,宽和面积。3、长方体的底面积一定,体积和高。4、分子一定,分母和分数值。5、长方形
45、的周长一定,长和宽。6、一个自然数和它的倒数。7、正方形的边长与周长。8、正方形的边长与面积。9、圆的半径与周长。10、圆的面积与半径。11、什么样的两个量叫做成正比例的量?二、新授活动二:探索一个数与它的5倍之间的关系。1、求出一个数的5倍,填写书上表格。自己独立完成。2、判断一个数的5倍和这个数有怎样的关系?说说你判断的理由小结:一个数和它的5倍之间具有正比例关系。3、根据上表,说出下图中各点的含义。(图见书上)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。4、连接各点,你发现了什么?注:所描的点都在同一条直线上。5、利用书上的图,把下表填完整。6、估计并找一找这组数据在统计图上的位置。自己独立完成。在统计图上估计一下,看看自己估计地是否准确三、练习活动三:试一试。1、在下图中描点,表示第20页两个表格中的数量关系。2、思考;连接各点,你发现了什么?活动四:练一练。1、圆的半径和面