《《圆锥的体积》学校六班级数学教案.docx》由会员分享,可在线阅读,更多相关《《圆锥的体积》学校六班级数学教案.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、圆锥的体积学校六班级数学教案 通过在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。下面就是我给大家带来的学校六班级圆锥的体积数学优质教材教案,盼望能关心到大家! 学校六班级圆锥的体积数学优质教材教案一 教学目标: 1、学问与技能 理解圆锥体积公式的推导过程,初步把握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。 2、过程与方法 通过操作、试验、观看等方式,引导同学进行比较、分析、综合、猜想,在感知的基础上加以推断、推理来猎取新学问。 3、情感态度与价值观 渗透学问是“相互转化”的辨证思想,养成擅长猜想的习惯,在探究合作中感受教学与我的生活的亲密联系,
2、让同学感受探究胜利的欢乐。 教学重点: 把握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。 教学难点: 理解圆锥体积公式的推导过程。 教具学具: 不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。 教学流程: 一、创设情境,提出问题 师:五一节放假期间,老师带着自己的小外甥去商场购物,正好商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算? 生:我选择底面的; 生:我选择高是的; 生:我选择介于二者之间的。 师:每个人都认为自己选择的哪种最合算,那么谁的看法正确呢? 生:
3、只要求出冰淇淋的体积就可以了。 师:冰淇淋是个什么外形?(圆锥体) 生:你会求吗? 师:通过这节课的学习,信任这个问题就很简单解答了。下面我们一起来讨论圆锥的体积。并板书课题:圆锥的体积。 二、设疑激趣,探求新知 师:那么你能想方法求出圆锥的体积吗? (同学猜想求圆锥体积的方法。) 生:我们可以利用求不规章物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。 师:假如这样,你觉得行吗? 老师依据同学的回答做出最终的评价; 生:老师,我们前面学过把圆转化成长方形来讨论,我想圆锥是不是也可以这样做呢? 师:大家猜一猜圆锥体可能会转化成哪一种图形,你的依据是什么? 小组中大家商议。 生
4、:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。 师:此种方法是否可行? 同学进行评价。 师:哪个小组还有更好的方法? 生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。假如将圆锥转化成圆柱,就更简单进行讨论。) 师:既然大家都认为圆锥与圆柱的联系最为亲密,请各组先拿出学具袋的圆锥与圆柱,观看比较他们的底与高的大小关系。 1、各小组进行观看争论。 2、各小组进行沟通,老师做适当的板书。 通过同学的沟通出现以下几种状况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等
5、高;四是圆柱与圆锥等底等高。 3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种状况都进行讨论?能否找到一种既简便又简单操作且能代表全部圆柱和圆锥关系的一组呢?(小组争论) 4、小组沟通,在此环节着重让同学说出选择等底等高的圆锥体与圆柱体进行探究的理由。 师:我们大家全都认为应当选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积高”来表示圆锥体的体积行不行?为什么? 师:圆锥体的体积小,那你猜想一下这两个形体的体积的大小有什么样的关系? 生:大约是圆柱的一半。 生: 师:究竟谁的看法正确呢? 师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥
6、与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在试验前先阅读试验要求,(课件演示)只有目标明确,才能更好的合作。开头吧! 要求: 试验材料,任选沙、米、水中的一种。 试验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。 (生进行试验操作、小组沟通) 师: 谁来汇报一下,你们组是怎样做试验的? 通过做试验,你们发觉它们有什么关系? 生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。 生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。) 师:同学们得出这个结论特别重要,其他组也是这样的吗?生略 师:请看
7、大屏幕,看数学小博士是怎样做的?(课件演示) 齐读结论: 师:你能依据刚才我们的试验和课件演示的状况,也给圆锥的体积写一个公式? (小组争论,得出圆锥的体积公式,得到以下公式:圆柱体积3=圆锥体积,则V圆锥=sh3即V圆锥=1/3sh 师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积? (噢!三种冰淇淋的体积原来一样大) 联系生活,拓展运用: 本练习共有三个层次: 1、基本练习 (1)推断对错,并说明理由。 圆柱的体积相当于圆锥体积的3倍。( ) 一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是( ) 一个圆柱和一个圆锥等底等高体积相差21立方厘米,
8、圆锥的体积是7立方厘米。( ) (2)计算下面圆锥的体积。(单位:厘米) s=25.12 h=2.5 r=4, h=6 2、变形练习 出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子, 得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米, (1)、你能依据这些信息,用不同的方法计算出这堆沙子的体积吗? (2)、找一找这些计算方法有什么共同的特点? V锥=1/3Sh (3)、预备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深? 3、拓展练习 一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。假如每
9、立方米煤重1.4吨,这堆煤大约重多少吨? 整理归纳,回顾体验 (通过小结展现同学个性,同学在学习中的自我体验,使孩子情感态度,价值观得到升华。) 学校六班级圆锥的体积数学优质教材教案二 教学内容: 第2526页,例2、例3及练习四的第38题。 教学目的: 1、过分小组倒水试验,使同学自主探究出圆锥体积和圆柱体积之间的关系,初步把握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简洁问题。 2、已有的生活和学习阅历,在小组活动过程中,培育同学的动手操作力量和自主探究力量。 3、过小组活动,试验操作,奇妙设置探究障碍,激发同学的自主探究意识,进展同学的空间观念
10、。 教学重点: 把握圆锥体积的计算公式。 教学难点: 正确探究出圆锥体积和圆柱体积之间的关系 教具预备: 每生预备一组等底等高的圆柱和圆锥模具,大米,水,沙子等 教学过程: 一、复习 1、圆锥有什么特征?(使同学进一步熟识圆锥的特征:底面、侧面、高和顶点) 2、圆柱体积的计算公式是什么? 指名同学回答,并板书公式:“圆柱的体积=底面积高”。 二、新课 1、教学圆锥体积的计算公式。 (1)回忆圆柱体积计算公式的推导过程,使同学明确求圆柱的体积是通过切拼成长方体来求得的. (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过试验的方法,得到计算圆锥体积的公式) (3)拿
11、出等底等高的圆柱和圆锥各一个,通过演示,使同学发觉“这个圆锥和圆柱是等底等高的,下面我们通过试验,看看它们之间的体积有什么关系?” 组织同学试验分组合作学习 (4)先在圆锥里装满水,然后倒入圆柱。让同学留意观看,倒几次正好把圆柱装满? (老师让同学留意,记录几次,使同学清晰地看到倒3次正好把圆柱装满。) (5)这说明白什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 ) 同学叙述试验过程并总结结论,得出计算公式 板书:圆锥的体积= 1/3圆柱的体积=1/3 底面积高, 字母公式:V= 1/3Sh 2、教学练习四第3题 (1)这道题已知什么?求什么?已知圆锥的底面积和高应当怎样计算? (2)
12、引导同学对比圆锥体积的计算公式代入数据,然后让同学自己进行计算,做完后集体订正。 3、巩固练习:完成练习四第4题。 4、教学例3. (1)出示例3 已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。 (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高) (3)题目的条件中不知道圆锥的底面积,应当怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后依据圆锥的体积公式求出沙堆的体积) (4)分析完后,指定两名同学板演,其余同学将计算步骤写在教科书第26页上.做完后集体订正。(留意同学最终得数的取舍方法是
13、否正确) 四、巩固练习 1、做练习四的第7题。 同学先独立推断这三句话是否正确,然后全般核对评讲。 2、做练习四的第8题。 (1)引导同学同学思索回答以下问题 这道题已知什么?求什么? 求圆锥的体积必需知道什么? 求出这堆煤的体积后,应当怎样计算这堆煤的重量? (2)让同学做在练习本上,老师巡察,做完后集体订正。 3、做练习四的第6题。 (1)指名同学先后回答下面问题 圆柱的侧面积等于多少? 圆柱的表面积的含义是什么?怎样计算? 圆柱体积的计算公式是什么? 圆锥的体积公式是什么? (2)同学把计算结果填写在教科书第28页的表格中,做完后集体订正。 五、课堂练习 1、填空 (1)圆锥体体积的计算
14、公式( ) (2)等底等高的圆锥体是圆柱体体积的( ),圆柱体是圆锥体体积的()。 (3)等底等高的圆锥体体积是3立方厘米,圆柱体的体积是()。 (4)体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高()。 (5)体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是()。 (6)等底等高的圆柱和圆锥,圆柱比圆锥的体积大()。 2、推断 (1)圆柱体的体积肯定比圆锥体的体积大 . (2)圆锥的体积等于和它等底等高的圆柱体的1/3. (3)圆锥体、正方体、长方体的体积都等于底面积高。 (4)圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。 3、补充习题 (1)一堆煤成圆锥形,
15、底面半径是1.5米,高是1.1米。这堆煤的体积是多少?假如每立方米的煤重约1.4吨,这堆煤有多少吨? (2)一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的大路上铺2厘米厚的路面,能铺多少米? (3)一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少? (4)在一个底面半径是10cm的圆柱形水桶中装有水,把一 个底面半径为5cm的圆锥形铁锤浸没在水中,水面上升了1cm,试问铁锤的高是多少? (5)等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米? 六、总结 这节课学习了哪些内容?你是如何精确地记住圆锥的体积公式的? 教学反
16、思: 从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的熟悉,而这一熟悉的形成,靠文字和观摩演示都是苍白无力的,它需要同学发自内心的需要,全身心的体验,使同学在试验中对自己的试验过程和结论进行对比和反思,悟出等底等高的必要性,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的详细含义。 学校六班级圆锥的体积数学优质教材教案三 教学目标: 1.学问与技能目标 能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。 2.过程与方法 在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。 3.情感态度与价值感 在探究
17、合作中感受教学与我生活的亲密联系,让同学感受探究胜利的欢乐。 教学重点: 把握圆锥体积的计算公式,并能敏捷利用公式求圆锥的体积。 教学难点: 理解圆锥体积公式的推导过程及解决生活中的实际问题 学习者特征分析: 接受训练者是学校六班级的同学。 教学策略选择与设计: (1)引导同学主动建构学问是新课标的重要理念,六班级的同学尽管具备了肯定的规律思维力量,但感性学问对于他们来说还是特别重要的。因此,教学中通过引导同学通过自主探究、解决问题,真正把握所学学问,进展数学力量,真正做到“动手操作、体验胜利” (2)以试验要求为主线,既动手操作,又动脑思索,努力探究圆锥体的计算方法。 (3)问题解决为主的教
18、学策略:通过演示、小组沟通、动手操作、感念辨析等方式,本课从详细的同学感爱好的活动中,让同学自己发觉问题,提出问题,体验探究胜利的欢乐;提高同学解决问题的力量,巩固所学学问。 教学资源与工具设计: (1)每位同学预备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。直尺6把。 (2)老师自制的多媒体课件; 教学过程: 一、复习旧知,课前铺垫 1.怎样计算圆柱的体积? 指名回答,老师板书:圆柱体的体积=底面积高。 2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米? 指两名板演,全班齐练,集体订正。 二、提出质疑,引入新课 圆锥有什么特征? 它的体积
19、如何计算呢? 今日我们就利用这些学问探讨新的怎样计算圆锥的体积(板书课题) 三、动手操作 ,获得新知 1. 探讨圆锥的体积公式 老师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的: 同学回答,老师板书: 圆柱(转化)长方体 圆柱体积公式(推导)长方体体积公式 老师:借鉴这种方法,为了我们讨论圆锥体体积的便利,每个组都预备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?同学操作比较。 (1) 提问同学:你发觉到什么?(这个圆柱体和这个圆锥体的外形有什么关系) (同学得出:底面积相等,高也相等。) 底面积相等,高也相等,用数
20、学语言说就叫“等底等高”。 (板书:等底 等高) (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积高”来求圆锥体体积行不行?为什么? 老师:圆锥体的体积小,那你估量一下这两个形体的体积大小有什么样的关系?(指名发言) 用水和圆柱体、圆锥体做试验。怎样做这个试验由小组同学自己商议,但最终要向同学们汇报,你们组做试验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。 (3) 同学分组做试验。 谁来汇报一下,你们组是怎样做试验的? 你们做试验的圆柱体和圆锥体在体积大小上发觉有什么倍数关系?(同学发言:圆柱体的体积是圆锥体体积的3倍) 同学们得出这个结论特别重要,其他
21、组也是这样的吗? 我们学过用字母表示数,谁来把这个公式整理一下?(指名发言) (4)同学操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发觉什么? 同学回答后,老师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。 (老师拿起一个小圆锥、一个大圆柱)假如老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能) 为什么你们做试验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(由于是等底等高的圆柱体和圆锥体。) 在等底等高的状况下。 (老师在体积公式与“等底等高”四个字上连线。) 现在我们得到的这个结论就更完整了。(指名反复叙述公式。) 老师
22、:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想方法推出计算公式?让同学动脑动手? 得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3. 小结:今后我们求圆锥体体积就用这种方法来计算。 (5)应用巩固 1.出示例题同学读题,理解题意,自己解决问题。 例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少? 同学完成后,进行小组沟通。 你是怎样想的和怎样解决问题。(提问同学多人) 老师板书: 1/3 1912=76(立方厘米) 答:它的体积是76立方米 2. 练习题。 一个圆锥体,半径为6cm,高为18cm。体积是多少?(同学在黑板上只列式,反馈。) 3
23、.出示例2:要求同学自己读题,理解题意思。 有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗? (1)提问:从题目中你知道什么? (2)同学独立完成后老师提问。并回答同学的质疑:3.14()1.5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思? 4.比较:例1和例2有什么地方不同? (1)直接告知了我们底面积,而(2)没有直接告知,要求我们先求出底面积,再求出圆锥体积。 四、综合练习,进展思维 1.一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨? 2.选择题。 每道题下面有3个答案,你认为哪个答案正确就用
24、手指数表示。 (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( ) 立方米 3a立方米 9立方米 (2)把一段圆钢切削成一个的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米 6立方米 3立方米 2立方米 3.同学操作 看看我们的教室是什么体?(长方体) 要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积?(小组争论) 指名发言。当争辩不出结果时,让同学以小组为单位动手测量数据:教室长12m,宽6m,高4m.并板书出来,再比较怎样放体积的圆锥体。 五、课后小结,归纳学问 这节课你有什么收获?哪个同学、哪个小组学习? 六、作业布置,巩固新知 1、本节课后第3、4、5题。 2、回去观看你生活身边有哪圆锥物体?测量计算它们的体积。下节课沟通汇报。 圆锥的体积学校六班级数学教案.