《2022届高三数学一轮复习(原卷版)考点33 章末检测五(原卷版).docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)考点33 章末检测五(原卷版).docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、考点33 章末检测五1、 单选题1、(2021·山东济南市·高三一模)已知,若,则的值为( )ABCD2、(2021·山东济南市·高三二模)中,“”是“”的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件3、(2020届山东实验中学高三上期中)在中,若 ,则=( )A1B2 C3D44、(2020届山东师范大学附中高三月考)为了得函数的图象,只需把函数的图象( )A向左平移个单位B向左平移单位C向右平移个单位D向右平移个单位5、(湖北省武汉2020-2021学年高三质检)已知tana=2,则= ( )A2BC-2D6、(2020届山
2、东省潍坊市高三上学期统考)已知的内角的对边分别为,若,则面积的最大值是ABCD7、(2021·山东青岛市·高三二模)我国魏晋时期著名的数学家刘徽在九章算术注中提出了“割圆术割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体而无所失矣”.也就是利用圆的内接多边形逐步逼近圆的方法来近似计算圆的面积.如图的半径为1,用圆的内接正六边形近似估计,则的面积近似为,若我们运用割圆术的思想进一步得到圆的内接正二十四边形,以此估计,的面积近似为( )ABCD8、(2021·山东济南市·高三二模)将函数的图象向右平移个单位后,得到函数的图象,则下列关于的说法正确的是(
3、 )A最小正周期为B最小值为C图象关于点中心对称D图象关于直线对称2、 多选题9、(2021·山东滨州市·高三二模)函数的部分图象如图所示,则下列结论中正确的是( )A的最小正周期为B的最大值为2C在区间上单调递增D为偶函数10、(2020届山东省滨州市三校高三上学期联考)设函数,则下列结论正确的是( )A是的一个周期B的图像可由的图像向右平移得到C的一个零点为D的图像关于直线对称11、(2020·山东新泰市第一中学高三月考),分别为内角,的对边.已知,且,则( )ABC的周长为D的面积为12、(2020届山东省枣庄市高三上学期统考)将函数的图象向右平移个单位长度
4、得到图象,则下列判断正确的是( )A函数在区间上单调递增B函数图象关于直线对称C函数在区间上单调递减D函数图象关于点对称三、填空题13、(山东省2020-2021学年高三调研)已知角的顶点与直角坐标系的原点重合,始边与轴的非负半轴重合,终边经过点,则=_14、(2020届山东实验中学高三上期中)在中,分别为内角的对边,若,且,则_15、(2021·山东德州市·高三期末)数书九章是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题数书九章中记录了秦九解的许多创造性成就,其中在卷五“三斜求积”中提出了已知三角形三边a,b,c求面积的公式,这与古
5、希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积”若把以上这段文字写成公式,即S为三角形的面积,a,b,c为三角形的三边长,现有满足且,则的外接圆的半径为_16、(2021·山东青岛市·高三三模)若,则_.四、解答题17、(2021·宁夏高三其他模拟(理)在中,已知角,所对的边分别是,.(1)求角的值;(2)求的面积.18、(2020届山东实验中学高三上期中)己知函数的最大值为1.(1)求实数的值;(2)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值
6、.19、(2021·江苏徐州市·高三期末)在中,角的对边分别为,且.(1)求角;(2)若,为边的中点,在下列条件中任选一个,求的长度.条件:的面积,且;条件:(注:如果选择两个条件分别解答,按第一个解答记分)20、(2020·山东高三其他模拟)在中,角所对的边分别为.已知.(1)若,求的值(2)若的面积为,求周长的最小值.21、(2020·山东高三其他模拟)已知函数的部分图象如图所示.(1)求的解析式(2)设若关于的不等式恒成立,求的取值范围.22、(2021·江苏苏州市·高三期末),三个条件中任选一个,补充在下面的问题中,并进行解答.问题:已知的三边,所对的角分别为,若,_,求的面积注:如果选择多个条件分别解答,按第一个解答计分.