《高三数学第一轮复习 函数的图象(3)教案 文.doc》由会员分享,可在线阅读,更多相关《高三数学第一轮复习 函数的图象(3)教案 文.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、淘宝店铺:漫兮教育函数的图象(3)三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤)11已知函数f(x)定义在2,2上的图象如图所示,请分别画出下列函数的图象; (1)yf(x1);(2)yf(x)1;(3)yf(x);(4)yf(x);(5)y|f(x)|;(6)yf(|x|);(7)y2f(x);(8)yf(2x)解:利用图象变换技巧进行平移、伸缩、对称、翻折即可(1)将函数yf(x),x2,2的图象向左平移1个单位得到yf(x1),x3,1的图象,如图.(2)将函数yf(x),x2,2的图象向上平移1个单位即得到yf(x)1,x2,2的图象,如图.
2、(3)函数yf(x)与yf(x),x2,2的图象关于y轴对称,如图.(4)函数yf(x)与yf(x),x2,2的图象关于x轴对称,如图. (5)将函数yf(x),x2,2的图象在x轴下方的部分翻折到x轴上方,x轴上方的部分不变,得到y|f(x)|的图象,如图.(6)考虑到函数yf(|x|)为2,2上的偶函数,所以函数yf(x),x2,2在y轴右侧的部分不变,左侧部分换为右侧关于y轴对称的图象即可得到yf(|x|)的图象,如图. (7)将函数yf(x),x2,2的图象上所有点的横坐标不变,纵坐标伸长为原来的2倍,得到y2f(x)的图象,如图.(8)将函数yf(x),x2,2的图象上所有点的纵坐标
3、不变,横坐标缩小为原来的,得到yf(2x)的图象,如图.误区指津:注意区别y|f(x)|与yf(|x|)这两个函数图象的作法后者一定是偶函数,但前者却不一定因此在作后者图象时,我们先作出yf(x)的图象,并去掉y轴左侧的图象,再将y轴右侧的图象“拷贝”一份,并关于y轴对称“粘贴”到y轴的左侧,即得yf(|x|)的图象评析:许多有关函数图象变换的题目都是建立在以上8种基本作图的基础之上,应充分运用这些变换技巧作图请注意,我们在作已知解析式的函数的图象时,应先在定义域范围内对已知解析式进行化简,转化成熟悉的函数作图12如图函数yx3x的图象沿x轴向右平移a个单位,得曲线C,设曲线C的方程yf(x)
4、对任意tR都有f(1t)f(1t),试求f(1)f(1)的值解:由题意得f(x)(xa)3(xa).f(1t)f(1t),点P(1t,y)与点Q(1t,y)在曲线C上,对于任意tR,线段PQ中点M(1,0)为定点,即曲线C上任意一点P关于点M的对称点Q都在曲线C上故曲线C关于点M(1,0)对称又因为y(xa)3(xa)的图象关于点(a,0)对称,且仅有一个对称中心,所以a1.即f(x)(x1)3(x1).故f(1)f(1)8.评析:(1)yf(x)图象关于xa对称任意xD,有f(xa)f(ax);(2)yf(x)的图象关于点(a,0)对称定义域中任意x,f(ax)f(ax) 13已知函数f(x
5、)2x,xR.(1)当m取何值时方程|f(x)2|m有一个解?两个解?(2)若不等式f2(x)f(x)m>0在R上恒成立,求m的范围解:(1)令F(x)|f(x)2|2x2|,G(x)m,画出F(x)的图象如图所示:由图象看出,当m0或m2时,函数F(x)与G(x)的图象只有一个交点,原方程有一个根;当0<m<2时,函数F(x)与G(x)的图象有两个交点,原方程有两个根(2)令f(x)t,H(t)t2t,H(t)2在区间(0,)上是增函数,H(t)>H(0)0,因此要使t2t>m在区间(0,)上恒成立,应有m0.评析:借助函数图象利用数形结合思想解题,形象直观、简洁明快解题时应注意合理选取辅助函数,使函数图象易作,变化趋势清晰,同时应注意图象的草图应能真实反映函数的变化规律,以免因图象的粗糙性而产生错误