2022届高三数学一轮复习(原卷版)专题24 立体几何的位置关系(解析版).docx

上传人:秦** 文档编号:5098103 上传时间:2021-12-03 格式:DOCX 页数:12 大小:1.38MB
返回 下载 相关 举报
2022届高三数学一轮复习(原卷版)专题24 立体几何的位置关系(解析版).docx_第1页
第1页 / 共12页
2022届高三数学一轮复习(原卷版)专题24 立体几何的位置关系(解析版).docx_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《2022届高三数学一轮复习(原卷版)专题24 立体几何的位置关系(解析版).docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)专题24 立体几何的位置关系(解析版).docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、专题24立体几何的位置关系 命题规律内 容典 型考查空间线面、面面平行与垂直的判定与性质2019年高考全国卷理数以解答题形式考查线面平行的判定与性质2019年高考全国卷理数以解答题形式考查线线垂直2019年高考江苏卷以解答题形式考查线面垂直2019年高考全国卷理数以解答题形式考查面面垂直的判定与性质2019年高考全国卷理数命题规律一 考查空间线线、线面、面面平行与垂直的判定与性质【解决之道】解决此类问题的关键在于熟记平面的基本性质、线线、线面、面面垂直的判定与性质,可以通过实验进行判断.【三年高考】1.【2020年高考浙江卷6】已知空间中不过同一点的三条直线,则“在同一平面”是“两两相交”的(

2、 )A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件【答案】B【解析】解法一:由条件可知当在同一平面,则三条直线不一定两两相交,由可能两条直线平行,或三条直线平行,反过来,当空间中不过同一点的三条直线两两相交,如图,三个不同的交点确定一个平面,则在同一平面,“”在同一平面是“两两相交”的必要不充分条件,故选B解法二:依题意是空间不过同一点的三条直线,当在同一平面时,可能,故不能得出两两相交当两两相交时,设,根据公理可知确定一个平面,而,根据公理可知,直线即,在同一平面综上所述,“在同一平面”是“两两相交”的必要不充分条件故选B2.【2019年高考全国卷理数】设,为两个

3、平面,则的充要条件是( )A内有无数条直线与平行B内有两条相交直线与平行 C,平行于同一条直线D,垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B3.【2018年高考浙江卷】已知平面,直线m,n满足m,n,则“mn”是“m”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】A【解析】因为m,n,m/n,所以根据线面平行的判定定理得m/.由m/不能得出m与内任一直线平行,所以m/n是m/的充分不必要条件,故选A.4.【20

4、19年高考全国卷理数】如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则( )ABM=EN,且直线BM,EN 是相交直线BBMEN,且直线BM,EN 是相交直线CBM=EN,且直线BM,EN 是异面直线DBMEN,且直线BM,EN 是异面直线【答案】B【解析】如图所示,作于,连接,BD,易得直线BM,EN 是三角形EBD的中线,是相交直线,过作于,连接,平面平面,平面,平面,平面,与均为直角三角形设正方形边长为2,易知,故选B5.【2019年高考北京卷理数】已知l,m是平面外的两条不同直线给出下列三个论断:lm;m;l以其中的两个论断作为条件,余

5、下的一个论断作为结论,写出一个正确的命题:_【答案】如果l,m,则lm.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l,m,则lm,正确;(2)如果l,lm,则m,不正确,有可能m在平面内;(3)如果lm,m,则l,不正确,有可能l与斜交、l.故答案为:如果l,m,则lm.命题规律二 以解答题形式考查线面平行的判定与性质【解决之道】解决此类问题的关键要熟记线面平行、面面平行的判定与性质,会利用定理实现线线、线面、线面的相互转化.【三年高考】1.【2020年高考上海卷15】在棱长为10的正方体中,为左侧面上一点,已知点到的距离为3,到的距离为2,则过点且与平行的直线相交的

6、面是( )A B C D 【答案】A【解析】如图由条件可知直线交线段于点,连接,过点作的平行线,必与相交,那么也与平面相交,故选A 2.【2019年高考全国卷理数】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60°,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角AMA1N的正弦值【解析】(1)连结B1C,ME因为M,E分别为BB1,BC的中点,所以MEB1C,且ME=B1C又因为N为A1D的中点,所以ND=A1D由题设知A1B1DC,可得B1CA1D,故MEND,因此四边形MNDE为平行四边形,MNED又M

7、N平面EDC1,所以MN平面C1DE(2)由已知可得DEDA以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz,则,A1(2,0,4),设为平面A1MA的法向量,则,所以可取设为平面A1MN的法向量,则所以可取于是,所以二面角的正弦值为命题规律三 以解答题形式考查线线垂直【解决之道】直线与直线的垂直证明思路:(1)转化为相交垂直,依据:一条直线与两平行线中的一条垂直,则与另一条也垂直;(2)转化为线面垂直,依据线面垂直的定义:一直线与与一平面垂直这条直线与平面内任意直线都垂直;(3)向量法:证明两直线的方向向量垂直.【三年高考】1.【2019年高考江苏卷】如图,在直三棱柱

8、ABCA1B1C1中,D,E分别为BC,AC的中点,AB=BC求证:(1)A1B1平面DEC1;(2)BEC1E【解析】(1)因为D,E分别为BC,AC的中点,所以EDAB.在直三棱柱ABCA1B1C1中,ABA1B1,所以A1B1ED.又因为ED平面DEC1,A1B1平面DEC1,所以A1B1平面DEC1.(2)因为AB=BC,E为AC的中点,所以BEAC.因为三棱柱ABCA1B1C1是直棱柱,所以CC1平面ABC.又因为BE平面ABC,所以CC1BE.因为C1C平面A1ACC1,AC平面A1ACC1,C1CAC=C,所以BE平面A1ACC1.因为C1E平面A1ACC1,所以BEC1E.命题

9、规律四 以解答题形式考查线面垂直【解决之道】线面垂直的判定方法:定义法;判定定理法;性质定理2;性质定理4;面面垂直性质定理法;向量法:证明直线的方向向量与平面的法向量平行.【三年高考】1.【2019年高考全国卷理数】如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:BE平面EB1C1;(2)若AE=A1E,求二面角BECC1的正弦值【解析】(1)由已知得,平面,平面,故又,所以平面(2)由(1)知由题设知,所以,故,以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系Dxyz,则C(0,1,0),B(1,1,0),(0,1

10、,2),E(1,0,1),设平面EBC的法向量为n=(x,y,x),则即所以可取n=.设平面的法向量为m=(x,y,z),则即所以可取m=(1,1,0)于是所以,二面角的正弦值为命题规律五 以解答题形式考查面面垂直的判定与性质【解决之道】面面垂直的判定思路:定义法;判定定理法;向量法:证明两个平面的法向量垂直.【三年高考】1.【2019年高考全国卷理数】图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面BC

11、GE;(2)求图2中的二面角BCGA的大小.【解析】(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面由已知得ABBE,ABBC,故AB平面BCGE又因为AB平面ABC,所以平面ABC平面BCGE(2)作EHBC,垂足为H因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC由已知,菱形BCGE的边长为2,EBC=60°,可求得BH=1,EH=以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系Hxyz,则A(1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,1,0)设平面ACGD的法向量

12、为n=(x,y,z),则即所以可取n=(3,6,)又平面BCGE的法向量可取为m=(0,1,0),所以因此二面角BCGA的大小为30°2.【2018年高考全国卷理数】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值【解析】(1)由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为上异于C,D的点,且DC为直径,所以 DMCM.又 BCCM=C,所以DM平面BMC.而DM平面AMD,故平面AMD平面BMC.(2)以D为坐标原点,

13、的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz.当三棱锥MABC体积最大时,M为的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,所以面MAB与面MCD所成二面角的正弦值是.3.【2018年高考江苏卷】在平行六面体中,求证:(1)平面;(2)平面平面【解析】(1)在平行六面体ABCD-A1B1C1D1中,ABA1B1因为AB平面A1B1C,A1B1平面A1B1C,所以AB平面A1B1C(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1A1B又因为AB1B1C1,BCB1C1,所以AB1BC又因为A1BBC=B,A1B平面A1BC,BC平面A1BC,所以AB1平面A1BC因为AB1平面ABB1A1,所以平面ABB1A1平面A1BC

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁